712 research outputs found

    Effect of Subband Landau Level Coupling to the Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet

    Full text link
    In a recent experiment (Phys. Rev. Lett. {\bf 87}, 036903 (2001)), Spielman et al observed a linearly dispersing collective mode in quantum Hall ferromagnet. While it qualitatively agrees with the Goldstone mode dispersion at small wave vector, the experimental mode velocity is slower than that calculated by previous theories by a factor about 0.55. A better agreement with the experimental data may possibly be achieved by taking the subband Landau level coupling into account due to the finiteness of the layer thickness. A novel coupling of quantum fluctuation to the tunneling is briefly discussed.Comment: 4 pages; published versio

    Negative-coupling resonances in pump-coupled lasers

    Full text link
    We consider coupled lasers, where the intensity deviations from the steady state, modulate the pump of the other lasers. Most of our results are for two lasers where the coupling constants are of opposite sign. This leads to a Hopf bifurcation to periodic output for weak coupling. As the magnitude of the coupling constants is increased (negatively) we observe novel amplitude effects such as a weak coupling resonance peak and, strong coupling subharmonic resonances and chaos. In the weak coupling regime the output is predicted by a set of slow evolution amplitude equations. Pulsating solutions in the strong coupling limit are described by discrete map derived from the original model.Comment: 29 pages with 8 figures Physica D, in pres

    Global phase diagram of bilayer quantum Hall ferromagnets

    Full text link
    We present a microscopic study of the interlayer spacing d versus in-plane magnetic field BB_\parallel phase diagram for bilayer quantum Hall (QH) pseudo-ferromagnets. In addition to the interlayer charge balanced commensurate and incommensurate states analyzed previously, we address the corresponding interlayer charge unbalanced "canted" QH states. We predict a large anomaly in the bilayer capacitance at the canting transition and the formation of dipole stripe domains with periods exceeding 1 micron in the canted state.Comment: 4 RevTeX pgs, 2 eps figures, submitted to PR

    Theta angle versus CP violation in the leptonic sector

    Get PDF
    Assuming that the axion mechanism of solving the strong CP problem does not exist and the vanishing of theta at tree level is achieved by some model-building means, we study the naturalness of having large CP-violating sources in the leptonic sector. We consider the radiative mechanisms which transfer a possibly large CP-violating phase in the leptonic sector to the theta parameter. It is found that large theta cannot be induced in the models with one Higgs doublet as at least three loops are required in this case. In the models with two or more Higgs doublets the dominant source of theta is the phases in the scalar potential, induced by CP violation in leptonic sector. Thus, in the MSSM framework the imaginary part of the trilinear soft-breaking parameter A_l generates the corrections to the theta angle already at one loop. These corrections are large, excluding the possibility of large phases, unless the universality in the slepton sector is strongly violated.Comment: 5 pages, 2 figure

    Vortex Plastic Flow, B(x,y,H(t)),M(H(t)),Jc(B(t))B(x,y,H(t)), M(H(t)), J_c(B(t)), Deep in the Bose Glass and Mott-Insulator Regimes

    Full text link
    We present simulations of flux-gradient-driven superconducting vortices interacting with strong columnar pinning defects as an external field H(t)H(t) is quasi-statically swept from zero through a matching field BϕB_{\phi}. We analyze several measurable quantities, including the local flux density B(x,y,H(t)) B(x,y,H(t)), magnetization M(H(t))M(H(t)), critical current Jc(B(t))J_{c}(B(t)), and the individual vortex flow paths. We find a significant change in the behavior of these quantities as the local flux density crosses BϕB_{\phi}, and quantify it for many microscopic pinning parameters. Further, we find that for a given pin density Jc(B)J_c(B) can be enhanced by maximizing the distance between the pins for B<Bϕ B < B_{\phi} .Comment: 4 pages, 4 PostScript Figure

    The three-dimensional randomly dilute Ising model: Monte Carlo results

    Get PDF
    We perform a high-statistics simulation of the three-dimensional randomly dilute Ising model on cubic lattices L3L^3 with L256L\le 256. We choose a particular value of the density, x=0.8, for which the leading scaling corrections are suppressed. We determine the critical exponents, obtaining ν=0.683(3)\nu = 0.683(3), η=0.035(2)\eta = 0.035(2), β=0.3535(17)\beta = 0.3535(17), and α=0.049(9)\alpha = -0.049(9), in agreement with previous numerical simulations. We also estimate numerically the fixed-point values of the four-point zero-momentum couplings that are used in field-theoretical fixed-dimension studies. Although these results somewhat differ from those obtained using perturbative field theory, the field-theoretical estimates of the critical exponents do not change significantly if the Monte Carlo result for the fixed point is used. Finally, we determine the six-point zero-momentum couplings, relevant for the small-magnetization expansion of the equation of state, and the invariant amplitude ratio Rξ+R^+_\xi that expresses the universality of the free-energy density per correlation volume. We find Rξ+=0.2885(15)R^+_\xi = 0.2885(15).Comment: 34 pages, 7 figs, few correction

    SS Ari: a shallow-contact close binary system

    Full text link
    Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25q=3.25 and a degree of contact factor f=9.4(\pm0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair results in a massive third body with M3=1.73MM_3=1.73M_{\odot} and P_3=87.0yr.Onthecontrary,assumingcontinuousperiodchangesoftheeclipsingpairtheorbitalperiodoftertiaryis37.75yranditsmassisaboutyr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75yr and its mass is about 0.278M_{\odot}$. Both of the cases suggest the presence of an unseen third component in the system.Comment: 28 pages, 9 figures and 5 table

    Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum

    Full text link
    High-gain resonant nonlinear Raman scattering on trapped cold atoms within a high-fineness ring optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap on atom chip is presented. The enhancement of scattering spectrum is due to a coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms through nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure

    Affective Man-Machine Interface: Unveiling human emotions through biosignals

    Get PDF
    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals

    Crossovers in Unitary Fermi Systems

    Full text link
    Universality and crossover is described for attractive and repulsive interactions where, respectively, the BCS-BEC crossover takes place and a ferromagnetic phase transition is claimed. Crossovers are also described for optical lattices and multicomponent systems. The crossovers, universal parameters and phase transitions are described within the Leggett and NSR models and calculated in detail within the Jastrow-Slater approximation. The physics of ultracold Fermi atoms is applied to neutron, nuclear and quark matter, nuclei and electrons in solids whenever possible. Specifically, the differences between optical lattices and cuprates is discussed w.r.t. antiferromagnetic, d-wave superfluid phases and phase separation.Comment: 50 pages, 15 figures. Contribution to Lecture Notes in Physics "BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge
    corecore