45 research outputs found

    Thermal Detection of Turbulent and Laminar Dissipation in Vortex Front Motion

    Full text link
    We report on direct measurements of the energy dissipated in the spin-up of the superfluid component of 3He-B. A vortex-free sample is prepared in a cylindrical container, where the normal component rotates at constant angular velocity. At a temperature of 0.20Tc, seed vortices are injected into the system using the shear-flow instability at the interface between 3He-B and 3He-A. These vortices interact and create a turbulent burst, which sets a propagating vortex front into motion. In the following process, the free energy stored in the initial vortex-free state is dissipated leading to the emission of thermal excitations, which we observe with a bolometric measurement. We find that the turbulent front contains less than the equilibrium number of vortices and that the superfluid behind the front is partially decoupled from the reference frame of the container. The final equilibrium state is approached in the form of a slow laminar spin-up as demonstrated by the slowly decaying tail of the thermal signal.Comment: 12 pages, 5 figures, to appear in Journal of Low Temperature Physic

    Creating diamond color centers for quantum optical applications

    Full text link
    Nitrogen vacancy (NV) centers in diamond have distinct promise as solid-state qubits. This is because of their large dipole moment, convenient level structure and very long room-temperature coherence times. In general, a combination of ion irradiation and subsequent annealing is used to create the centers, however for the rigorous demands of quantum computing all processes need to be optimized, and decoherence due to the residual damage caused by the implantation process itself must be mitigated. To that end we have studied photoluminescence (PL) from NV^-, NV0^0 and GR1 centers formed by ion implantation of 2MeV He ions over a wide range of fluences. The sample was annealed at 600600^{\circ}C to minimize residual vacancy diffusion, allowing for the concurrent analysis of PL from NV centers and irradiation induced vacancies (GR1). We find non-monotic PL intensities with increasing ion fluence, monotonic increasing PL in NV0^0/NV^- and GR1/(NV0^0 + NV1^1) ratios, and increasing inhomogeneous broadening of the zero-phonon lines with increasing ion fluence. All these results shed important light on the optimal formation conditions for NV qubits. We apply our findings to an off-resonant photonic quantum memory scheme using vibronic sidebands

    Schroedinger cat-like states by conditional measurements on a beam-splitter

    Full text link
    A scheme for generating Schr\"{o}dinger cat-like states of a single-mode optical field by means of conditional measurement is proposed. Feeding into a beam splitter a squeezed vacuum and counting the photons in one of the output channels, the conditional states in the other output channel exhibit a number of properties that are very similar to those of superpositions of two coherent states with opposite phases. We present analytical and numerical results for the photon-number and quadrature-component distributions of the conditional states and their Wigner and Husimi functions. Further, we discuss the effect of realistic photocounting on the states.Comment: 6 figures(divided in subfigures) using a4.st

    High quantum efficiency photon-number-resolving detector for photonic on-chip information processing

    No full text
    We demonstrate a high-efficiency, photon-number resolving transition edge sensor, integrated on an optical silica waveguide structure. The detector consists of three individual absorber/sensor devices providing a total system detection efficiency of up to 93% for single photons at a wavelength of 1551.9 nm. This new design enables high fidelity detection of quantum information processes in on-chip platforms

    Homodyne Bell's inequalities for entangled mesoscopic superpositions

    Full text link
    We present a scheme for demonstrating violation of Bell's inequalities using a spin-1/2 system entangled with a pair of classically distinguishable wave packets in a harmonic potential. In the optical domain, such wave packets can be represented by coherent states of a single light mode. The proposed scheme involves standard spin-1/2 projections and measurements of the position and the momentum of the harmonic oscillator system, which for a light mode can be realized by means of homodyne detection. We discuss effects of imperfections, including non-unit efficiency of the homodyne detector, and point out a close link between the visibility of interference and violation of Bell's inequalities in the described scheme.Comment: 6 pages, 3 figures. Extended version, journal reference adde

    High-efficiency Bragg grating enhanced on-chip photon-number-resolving detectors

    No full text
    The recent trend towards integration of quantum optics experiments has produced a demand for on-chip single photon detectors with high quantum efficiencies. In previous work we demonstrated integrated photon number resolving detectors for use at telecommunications wavelengths [1], here we outline developments of this design which have enabled improvements in the quantum efficiency, permitting an on-chip detection efficiency of 92% to be obtained in the device of Fig. 1. ..

    Massive Star Formation

    Full text link
    This chapter reviews progress in the field of massive star formation. It focuses on evidence for accretion and current models that invoke high accretion rates. In particular it is noted that high accretion rates will cause the massive young stellar object to have a radius much larger than its eventual main sequence radius throughout much of the accretion phase. This results in low effective temperatures which may provide the explanation as to why luminous young stellar objects do not ionized their surroundings to form ultra-compact H II regions. The transition to the ultra-compact H II region phase would then be associated with the termination of the high accretion rate phase. Objects thought to be in a transition phase are discussed and diagnostic diagrams to distinguish between massive young stellar objects and ultra-compact H II regions in terms of line widths and radio luminosity are presented.Comment: 21 pages, 6 figures, chapter in Diffuse Matter from Star Forming Regions to Active Galaxies - A Volume Honouring John Dyson, Edited by T.W. Hartquist, J. M. Pittard, and S. A. E. G. Falle. Series: Astrophysics and Space Science Proceedings. Springer Dordrecht, 2007, p.6

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification. Funding: UK Research and Innovation and National Institute for Health Research

    Compact coupler designs for quantum optical circuits produced by direct UV writing

    No full text
    Integrated planar lightwave circuits (PLCs) provide a promising route to small-scale quantum optical networks [1]. Recent work on quantum logic gates using silica-based PLCs has highlighted the opportunities afforded by the ability to coherently manipulate degrees of freedom at the level of single photons [2]. Increasingly complex waveguide networks are required for linear optics quantum computing (LOQC), a route towards small scale quantum information processing [3]. This approach uses quantum interference between photons and measurements with feedforward to implement the nonlinear interactions between photons that are required for information processing. A major issue in developing such circuits is the internal loss and the coupling efficiency of input photon from optical fibers

    Femtosecond laser studies of ultrafast processes in semiconductors and large molecules

    No full text
    The basic considerations underlying the optical transmission-correlation technique based upon the high-repetition-rate 40 fs laser system are reviewed. Recent results on the relaxation dynamics of nonequilibrium carriers in GaAs and related compounds and structures and photoexcited dye molecules are summarized.Les considérations fondamentales sous-jacentes à la technique de transmission-corrélation optique basée sur le système laser 40 fs à haute cadence de répétition sont passées en revue. Des résultats récents sur la dynamique de relaxation des porteurs non équilibrés dans GaAs ainsi que dans des composés et structures apparentés et des molécules de colorants photoexcitées sont résumés
    corecore