11 research outputs found

    Results of geochemical monitoring of the activity of Ebeko volcano (Kurile Islands) used for eruption prediction

    Get PDF
    The monitoring of the state of active volcanoes, carried out using different parameters, including geochemical, is very important for studies of deep processes and geodynamics. All changes which occur within the crater before eruptions reflect the magma activation and depend on the deep structure of volcano. This paper gives the results of prolonged monitoring of Ebeko volcano, located in the contact zone between the oceanic and continental plates (the Kurile Island Arc). The geochemical method has been used as the basis for eruption prediction because the increase in the activity of the Ebeko in the period from 1963 to 1967 that ended in a phreatic eruption was not preceded by seismic preparation. Investigations carried out at Ebeko volcano give evidence that change of all the chosen geochemical parameters is a prognostic indicator of a forthcoming eruption. This change depends on the type of eruption, and the deep structure and hydrodynamic regime of the volcano

    The origin of stable halogenated compounds in volcanic gases

    No full text
    Background: Halogenated compounds in the atmosphere are of great environmental concern due to their demonstrated negative effect on atmospheric chemistry and climate. Detailed knowledge of the emission budgets of halogenated compounds has to be gained to understand better their specific impact on ozone chemistry and the climate. Such data are also highly relevant to guide policy decisions in connexion with international agreements about protection of the ozone layer. In selected cases, the relevance of specific emission sources for certain compounds were unclear. In this study we present new and comprehensive evidence regarding the existence and relevance of a volcanic contribution of chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), halons (bromine containing halo(hydro)carbons), and fully fluorinated compounds (e.g. CF4 and SF6) to the atmospheric budget. Methods: In order to obtain new evidence of a volcanic origin of these compounds, we collected repeatedly, during four field campaigns covering a period of two years, gases from fumaroles discharging over a wide range of temperatures at the Nicaraguan subduction zone volcanoes Momotombo, Cerro Negro and Mombacho, and analysed them with very sensitive GC/MS systems. Results and Discussion: In most fumarolic samples certain CFCs, HFCs, HCFCs, halons, and the fully fluorinated compounds CF4 and SF6 were present above detection limits. However, these compounds occur in the fumarole gases in relative proportions characteristic for ambient air. Conclusion: This atmospheric fingerprint can be explained by variable amounts of air entering the porous volcanic edifices and successively being incorporated into the fumarolic gas discharges. Recommendation and Outlook: Our results suggest that the investigated volcanoes do not constitute a significant natural source for CFCs, HFCs, HCFCs, halons, CF4, SF6 and NF3
    corecore