1 research outputs found
Localization for Random Unitary Operators
We consider unitary analogs of dimensional Anderson models on
defined by the product where is a deterministic
unitary and is a diagonal matrix of i.i.d. random phases. The
operator is an absolutely continuous band matrix which depends on a
parameter controlling the size of its off-diagonal elements. We prove that the
spectrum of is pure point almost surely for all values of the
parameter of . We provide similar results for unitary operators defined on
together with an application to orthogonal polynomials on the unit
circle. We get almost sure localization for polynomials characterized by
Verblunski coefficients of constant modulus and correlated random phases