146,942 research outputs found

    Verbal paired associates and the hippocampus: The role of scenes

    Get PDF
    It is widely agreed that patients with bilateral hippocampal damage are impaired at binding pairs of words together. Consequently, the verbal paired associates (VPA) task has become emblematic of hippocampal function. This VPA deficit is not well understood and is particularly difficult for hippocampal theories with a visuospatial bias to explain (e.g., cognitive map and scene construction theories). Resolving the tension among hippocampal theories concerning the VPA could be important for leveraging a fuller understanding of hippocampal function. Notably, VPA tasks typically use high imagery concrete words and so conflate imagery and binding. To determine why VPA engages the hippocampus, we devised an fMRI encoding task involving closely matched pairs of scene words, pairs of object words, and pairs of very low imagery abstract words. We found that the anterior hippocampus was engaged during processing of both scene and object word pairs in comparison to abstract word pairs, despite binding occurring in all conditions. This was also the case when just subsequently remembered stimuli were considered. Moreover, for object word pairs, fMRI activity patterns in anterior hippocampus were more similar to those for scene imagery than object imagery. This was especially evident in participants who were high imagery users and not in mid and low imagery users. Overall, our results show that hippocampal engagement during VPA, even when object word pairs are involved, seems to be evoked by scene imagery rather than binding. This may help to resolve the issue that visuospatial hippocampal theories have in accounting for verbal memory

    Generalized BFT Formalism of Electroweak Theory in the Unitary Gauge

    Full text link
    We systematically embed the SU(2)×\timesU(1) Higgs model in the unitary gauge into a fully gauge-invariant theory by following the generalized BFT formalism. We also suggest a novel path to get a first-class Lagrangian directly from the original second-class one using the BFT fields.Comment: 14 pages, Latex, no figure

    Correlation Assisted Phonon Softenings and the Mott-Peierls Transition in VO2_{2}

    Full text link
    To explore the driving mechanisms of the metal-insulator transition (MIT) and the structural transition in VO2, we have investigated phonon dispersions of rutile VO2 (R-VO2) in the DFT and the DFT+U (U : Coulomb correlation) band calculations. We have found that the phonon softening instabilities occur in both cases, but the softened phonon mode only in the DFT+U describes properly both the MIT and the structural transition from R-VO2 to monoclinic VO2 (M1-VO2). This feature demonstrates that the Coulomb correlation effect plays an essential role of assisting the Peierls transition in R-VO2. We have also found from the phonon dispersion of M1-VO2 that M1 structure becomes unstable under high pressure. We have predicted a new phase of VO2 at high pressure that has a monoclinic CaCl2-type structure with metallic nature

    Electron Spin Relaxation under Drift in GaAs

    Full text link
    Based on a Monte Carlo method, we investigate the influence of transport conditions on the electron spin relaxation in GaAs. The decay of initial electron spin polarization is calculated as a function of distance under the presence of moderate drift fields and/or non-zero injection energies. For relatively low fields (a couple of kV/cm), a substantial amount of spin polarization is preserved for several microns at 300 K. However, it is also found that the spin relaxation rate increases rapidly with the drift field, scaling as the square of the electron wavevector in the direction of the field. When the electrons are injected with a high energy, a pronounced decrease is observed in the spin relaxation length due to an initial increase in the spin precession frequency. Hence, high-field or high-energy transport conditions may not be desirable for spin-based devices.Comment: 4 pages, 3 figures, one table. Scheduled for publication in the May 26, 2003 issue of Applied Physics Letters (039321APL

    Spin relaxation of two-dimensional holes in strained asymmetric SiGe quantum wells

    Full text link
    We analyze spin splitting of the two-dimensional hole spectrum in strained asymmetric SiGe quantum wells (QWs). Based on the Luttinger Hamiltonian, we obtain expressions for the spin-splitting parameters up to the third order in the in-plane hole wavevector. The biaxial strain of SiGe QWs is found to be a key parameter that controls spin splitting. Application to SiGe field-effect transistor structures indicates that typical spin splitting at room temperature varies from a few tenth of meV in the case of Si QW channels to several meV for the Ge counterparts, and can be modified efficiently by gate-controlled variation of the perpendicular confining electric field. The analysis also shows that for sufficiently asymmetric QWs, spin relaxation is due mainly to the spin-splitting related D'yakonov-Perel' mechanism. In strained Si QWs, our estimation shows that the hole spin relaxation time can be on the order of a hundred picoseconds at room temperature, suggesting that such structures are suitable for p-type spin transistor applications as well

    On Models of New Physics for the Tevatron Top A_FB

    Get PDF
    CDF has observed a top forward-backward asymmetry discrepant with the Standard Model prediction at 3.4 \sigma. We analyze models that could generate the asymmetry, including flavor-violating W's, horizontal Z'_Hs, triplet and sextet diquarks, and axigluons. We consider the detailed predictions of these models for the invariant mass and rapidity distributions of the asymmetry at the parton level, comparing against the unfolded parton-level CDF results. While all models can reproduce the asymmetry with the appropriate choice of mass and couplings, it appears at first examination that the extracted parton-level invariant mass distribution for all models are in conflict with Tevatron observations. We show on closer examination, however, that t tbar events in Z'_H and W' models have considerably lower selection efficiencies in high invariant mass bins as compared to the Standard Model, so that W', Z'_H, and axigluon models can generate the observed asymmetry while being consistent with the total cross-section and invariant mass spectrum. Triplet and sextet models have greater difficulty producing the observed asymmetry while remaining consistent with the total cross-section and invariant mass distribution. To more directly match the models and the CDF results, we proceed to decay and reconstruct the tops, comparing our results against the "raw" CDF asymmetry and invariant mass distributions. We find that the models that successfully generate the corrected CDF asymmetry at the parton level reproduce very well the more finely binned uncorrected asymmetry. Finally, we discuss the early LHC reach for discovery of these models, based on our previous analysis [arXiv:1102.0018].Comment: 29 pages, 14 figures, 2 table
    • 

    corecore