12,377 research outputs found

    Classification of scale-free networks

    Full text link
    While the emergence of a power law degree distribution in complex networks is intriguing, the degree exponent is not universal. Here we show that the betweenness centrality displays a power-law distribution with an exponent \eta which is robust and use it to classify the scale-free networks. We have observed two universality classes with \eta \approx 2.2(1) and 2.0, respectively. Real world networks for the former are the protein interaction networks, the metabolic networks for eukaryotes and bacteria, and the co-authorship network, and those for the latter one are the Internet, the world-wide web, and the metabolic networks for archaea. Distinct features of the mass-distance relation, generic topology of geodesics and resilience under attack of the two classes are identified. Various model networks also belong to either of the two classes while their degree exponents are tunable.Comment: 6 Pages, 6 Figures, 1 tabl

    Local structure of In_(0.5)Ga_(0.5)As from joint high-resolution and differential pair distribution function analysis

    Full text link
    High resolution total and indium differential atomic pair distribution functions (PDFs) for In_(0.5)Ga_(0.5)As alloys have been obtained by high energy and anomalous x-ray diffraction experiments, respectively. The first peak in the total PDF is resolved as a doublet due to the presence of two distinct bond lengths, In-As and Ga-As. The In differential PDF, which involves only atomic pairs containing In, yields chemical specific information and helps ease the structure data interpretation. Both PDFs have been fit with structure models and the way in that the underlying cubic zinc-blende lattice of In_(0.5)Ga_(0.5)As semiconductor alloy distorts locally to accommodate the distinct In-As and Ga-As bond lengths present has been quantified.Comment: 9 pages, 7 figur

    Lattice dynamics and correlated atomic motion from the atomic pair distribution function

    Full text link
    The mean-square relative displacements (MSRD) of atomic pair motions in crystals are studied as a function of pair distance and temperature using the atomic pair distribution function (PDF). The effects of the lattice vibrations on the PDF peak widths are modelled using both a multi-parameter Born von-Karman (BvK) force model and a single-parameter Debye model. These results are compared to experimentally determined PDFs. We find that the near-neighbor atomic motions are strongly correlated, and that the extent of this correlation depends both on the interatomic interactions and crystal structure. These results suggest that proper account of the lattice vibrational effects on the PDF peak width is important in extracting information on static disorder in a disordered system such as an alloy. Good agreement is obtained between the BvK model calculations of PDF peak widths and the experimentally determined peak widths. The Debye model successfully explains the average, though not detailed, natures of the MSRD of atomic pair motion with just one parameter. Also the temperature dependence of the Debye model largely agrees with the BvK model predictions. Therefore, the Debye model provides a simple description of the effects of lattice vibrations on the PDF peak widths.Comment: 9 pages, 11 figure

    Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se

    Full text link
    Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb1−x_{1-x}Snx_{x}Se in the topologically non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb0.77_{0.77}Sn0.23_{0.23}Se and PbSe have different topological nature.Comment: 5 pages, 4 figure

    UMMS: constrained harmonic and anharmonic analyses of macromolecules based on elastic network models

    Get PDF
    UMass Morph Server (UMMS) has been developed for the broad impact on the study of molecular dynamics (MD). The elastic network model (ENM) of a given macromolecule has been proven as a useful tool for analyzing thermal behaviors locally and predicting folding pathways globally. UMMS utilizes coarse-grained ENMs at various levels. These simplifications remarkably save computation time compared with all-atom MD simulations so that one can bring down massive computational problems from a supercomputer to a PC. To improve computational efficiency and physical reality of ENMs, the symmetry-constrained, rigid-cluster, hybrid and chemical-bond ENMs have been developed and implemented at UMMS. One can request both harmonic normal mode analysis of a single macromolecule and anharmonic pathway generation between two conformations of a same molecule using elastic network interpolation at

    Polymer defect engineering-conductive 2D organic platelets from precise thiophene-doped polyethylene

    Get PDF
    We developed a simple way to create 2D conductive nanostructures with dielectric cores and conductive surfaces based on polyethylene with in-chain thiophene groups. Generally, thiophene-based polymers show great conductive properties, but exhibit a poor processability. Here, we use the crystallization of a polyethylene chain with precisely distributed thiophene groups as the platform for a self-organization of a lamellar structure. During crystallization, thiophene groups are expelled to the crystal surface. Subsequent copolymerization with 3,4-ethylenedioxythiophene (EDOT) molecules finally yields 2D platelets with a conductive surface. The electric properties of the surface are demonstrated by conductivity measurements. Given the molecular structure of the polymer, it can be assumed that the conductive layer consists of only one monoatomic layer of polymerized thiophene. We thus show a new way to create an ultra-thin, conductive surface on a polymer surface in just a few steps. Hence, the method presented here opens up a wide range of possibilities to produce complex, nanoscale electronic structures for microelectronic applications

    Improved Photocatalytic Performance via Air-Plasma Modification of Titanium Dioxide: Insights from Experimental and Simulation Investigation

    Full text link
    Commercial titanium dioxide is successfully plasma-treated under ambient conditions for different time periods, leading to reduced crystallite size and the creation of oxygen vacancies. Density functional theory-based calculations reveal the emergence of additional localized states close to the conduction band, primarily associated with under-coordinated titanium atoms in non-stoichiometric titanium-oxide systems. The plasma-treated samples exhibit improved photocatalytic performance in the degradation of methylene blue compared to untreated samples. Moreover, the 4-hour plasma-treated photocatalyst demonstrates commendable stability and reusability. This work highlights the potential of cost-effective plasma treatment as a simple modification technique to significantly enhance the photocatalytic capabilities of titanium dioxide.Comment: Manuscript and Supplementary material include
    • …
    corecore