71,597 research outputs found

    Saltless solar pond

    Get PDF
    A solar pond adapted for efficiently trapping and storing radiant solar energy without the use of a salt concentration gradient in the pond is disclosed. A body of water which may be fresh, saline, relatively clear or turbid, is substantially covered by a plurality of floating honeycomb panels. The honeycomb panels are made of a material such as glass which is pervious to short wave solar radiation but impervious to infrared radiation. Each honeycomb panel includes a multitude of honeycomb cells. The honeycomb panels are divided into the elongated honeycomb cells by a multitude of intermediate plates disposed between a bottom plate and top plate of the panel. The solar pond is well suited for providing hot water of approximately 85 to 90 C temperature for direct heating applications, and for electrical power generation

    Regional applicability and potential of salt-gradient solar ponds in the United States. Volume 1: Executive summary

    Get PDF
    Findings of a survey concerning salt ponds are summarized. The residential, commercial, and institutional buildings sector is discussed. The industrial process heat sector is considered. The agricultural process heat sector is examined. The electrical power sector is reviewed. The desalinization sector is considered

    Path integral for a relativistic Aharonov-Bohm-Coulomb system

    Full text link
    The path integral for the relativistic spinless Aharonov-Bohm-Coulomb system is solved, and the energy spectra are extracted from the resulting amplitude.Comment: 6 pages, Revte

    Mass Spectrum and Bounds on the Couplings in Yukawa Models With Mirror-Fermions

    Full text link
    The SU(2)L⊗SU(2)R\rm SU(2)_L\otimes SU(2)_R symmetric Yukawa model with mirror-fermions in the limit where the mirror-fermion is decoupled is studied both analytically and numerically. The bare scalar self-coupling λ\lambda is fixed at zero and infinity. The phase structure is explored and the relevant phase transition is found to be consistent with a second order one. The fermionic mass spectrum close to that transition is discussed and a first non-perturbative estimate of the influence of fermions on the upper and lower bounds on the renormalized scalar self-coupling is given. Numerical results are confronted with perturbative predictions.Comment: 7 (Latex) page

    α\alpha-Particle Spectrum in the Reaction p+11^{11}B→α+8Be∗→3α\to \alpha + ^8Be^*\to 3\alpha

    Full text link
    Using a simple phenomenological parametrization of the reaction amplitude we calculated α\alpha-particle spectrum in the reaction p+11^{11}B→α+8Be∗→3α\to \alpha + ^8Be^*\to 3\alpha at the resonance proton energy 675 KeV. The parametrization includes Breit-Wigner factor with an energy dependent width for intermediate 8Be∗^8Be^* state and the Coulomb and the centrifugal factors in α\alpha-particle emission vertexes. The shape of the spectrum consists of a well defined peak corresponding to emission of the primary α\alpha and a flat shoulder going down to very low energy. We found that below 1.5 MeV there are 17.5% of α\alpha's and below 1 MeV there are 11% of them.Comment: 6 pages, 3 figure

    Driven classical diffusion with strong correlated disorder

    Full text link
    We analyze one-dimensional motion of an overdamped classical particle in the presence of external disorder potential and an arbitrary driving force F. In thermodynamical limit the effective force-dependent mobility mu(F) is self-averaging, although the required system size may be exponentially large for strong disorder. We calculate the mobility mu(F) exactly, generalizing the known results in linear response (weak driving force) and the perturbation theory in powers of the disorder amplitude. For a strong disorder potential with power-law correlations we identify a non-linear regime with a prominent power-law dependence of the logarithm of mu(F) on the driving force.Comment: 4 pages, 2 figures include

    Configuration-Space Location of the Entanglement between Two Subsystems

    Full text link
    In this paper we address the question: where in configuration space is the entanglement between two particles located? We present a thought-experiment, equally applicable to discrete or continuous-variable systems, in which one or both parties makes a preliminary measurement of the state with only enough resolution to determine whether or not the particle resides in a chosen region, before attempting to make use of the entanglement. We argue that this provides an operational answer to the question of how much entanglement was originally located within the chosen region. We illustrate the approach in a spin system, and also in a pair of coupled harmonic oscillators. Our approach is particularly simple to implement for pure states, since in this case the sub-ensemble in which the system is definitely located in the restricted region after the measurement is also pure, and hence its entanglement can be simply characterised by the entropy of the reduced density operators. For our spin example we present results showing how the entanglement varies as a function of the parameters of the initial state; for the continuous case, we find also how it depends on the location and size of the chosen regions. Hence we show that the distribution of entanglement is very different from the distribution of the classical correlations.Comment: RevTex, 12 pages, 9 figures (28 files). Modifications in response to journal referee
    • …
    corecore