22,965 research outputs found
Replacement Paths via Row Minima of Concise Matrices
Matrix is {\em -concise} if the finite entries of each column of
consist of or less intervals of identical numbers. We give an -time
algorithm to compute the row minima of any -concise matrix.
Our algorithm yields the first -time reductions from the
replacement-paths problem on an -node -edge undirected graph
(respectively, directed acyclic graph) to the single-source shortest-paths
problem on an -node -edge undirected graph (respectively, directed
acyclic graph). That is, we prove that the replacement-paths problem is no
harder than the single-source shortest-paths problem on undirected graphs and
directed acyclic graphs. Moreover, our linear-time reductions lead to the first
-time algorithms for the replacement-paths problem on the following
classes of -node -edge graphs (1) undirected graphs in the word-RAM model
of computation, (2) undirected planar graphs, (3) undirected minor-closed
graphs, and (4) directed acyclic graphs.Comment: 23 pages, 1 table, 9 figures, accepted to SIAM Journal on Discrete
Mathematic
Structural basis of template-boundary definition in Tetrahymena telomerase.
Telomerase is required to maintain repetitive G-rich telomeric DNA sequences at chromosome ends. To do so, the telomerase reverse transcriptase (TERT) subunit reiteratively uses a small region of the integral telomerase RNA (TER) as a template. An essential feature of telomerase catalysis is the strict definition of the template boundary to determine the precise TER nucleotides to be reverse transcribed by TERT. We report the 3-Å crystal structure of the Tetrahymena TERT RNA-binding domain (tTRBD) bound to the template boundary element (TBE) of TER. tTRBD is wedged into the base of the TBE RNA stem-loop, and each of the flanking RNA strands wraps around opposite sides of the protein domain. The structure illustrates how the tTRBD establishes the template boundary by positioning the TBE at the correct distance from the TERT active site to prohibit copying of nontemplate nucleotides
Heavy Baryons and electromagnetic decays
In this talk I review the theory of electromagnetic decays of the ground
state baryon multiplets with oneheavy quark, calculated using Heavy Hadron
Chiral Perturbation Theory. The M1 and E2 amplitudes for (S^{*}-> S gamma),
(S^{*} -> T gamma) and (S -> T gamma)are separately analyzed. All M1
transitions are calculated up to O(1/\Lambda_\chi^2). The E2 amplitudes
contribute at the same order for (S^{*}-> S gamma), while for (S^{*} -> T
gamma) they first appear at O(1/(m_Q \Lambda_\chi^2))and for (S -> T gamma) are
completely negligible. Once the loop contributions is considered, relations
among different decay amplitudes are derived. Furthermore, one can obtain an
absolute prediction for the widths of Xi^{0'(*)}_c-> Xi^{0}_c gamma and
Xi^{-'(*)}_b-> Xi^{-}_b gamma.Comment: Talk presented at 4^{th} International Conference Hyperons, Charm and
Beauty Hadrons Conference, Valencia June 200
An accretion model for the growth of the central black hole associated with ionization instability in quasars
A possible accretion model associated with the ionization instability of
quasar disks is proposed to address the growth of the central black hole
harbored in the host galaxy.The mass ratio between black hole and its host
galactic bulge is a nature consequence of our model.Comment: submitted to ApJ, 15 page
Phenomenological Analysis of D Meson Lifetimes
The QCD-based operator-product-expansion technique is systematically applied
to the study of charmed meson lifetimes. We stress that it is crucial to take
into account the momentum of the spectator light quark of charmed mesons,
otherwise the destructive Pauli-interference effect in decays will lead
to a negative decay width for the . We have applied the QCD sum rule
approach to estimate the hadronic matrix elements of color-singlet and
color-octet 4-quark operators relevant to nonleptonic inclusive decays. The
lifetime of is found to be longer than that of because the latter
receives a constructive -exchange contribution, whereas the hadronic
annihilation and leptonic contributions to the former are compensated by the
Pauli interference. We obtain the lifetime ratio
, which is larger than some earlier theoretical
estimates, but still smaller than the recent measurements by CLEO and E791.Comment: 14 pages, 3 figure
The flavor-changing bottom-strange quark production in the littlest Higgs model with T parity at the ILC
In the littlest Higgs model with T-parity (LHT) the mirror quarks induce the
special flavor structures and some new flavor-changing (FC) couplings which
could greatly enhance the production rates of the FC processes. We in this
paper study some bottom and anti-strange production processes in the LHT model
at the International Linear Collider (ILC), i.e.,
and . The results show that the production
rates of these processes are sizeable for the favorable values of the
parameters. Therefore, it is quite possible to test the LHT model or make some
constrains on the relevant parameters of the LHT through the detection of these
processes at the ILC.Comment: 12 pages, 8 figure
Implications of Color Gauge Symmetry For Nucleon Spin Structure
We study the chromodynamical gauge symmetry in relation to the internal spin
structure of the nucleon. We show that 1) even in the helicity eigenstates the
gauge-dependent spin and orbital angular momentum operators do not have
gauge-independent matrix element; 2) the evolution equations for the gluon spin
take very different forms in the Feynman and axial gauges, but yield the same
leading behavior in the asymptotic limit; 3) the complete evolution of the
gauge-dependent orbital angular momenta appears intractable in the light-cone
gauge. We define a new gluon orbital angular momentum distribution
which {\it is} an experimental observable and has a simple scale evolution.
However, its physical interpretation makes sense only in the light-cone gauge
just like the gluon helicity distribution y.Comment: Minor corrections are made in the tex
Charmless Exclusive Baryonic B Decays
We present a systematical study of two-body and three-body charmless baryonic
B decays. Branching ratios for two-body modes are in general very small,
typically less than , except that \B(B^-\to p \bar\Delta^{--})\sim
1\times 10^{-6}. In general, due to
the large coupling constant for . For three-body modes we
focus on octet baryon final states. The leading three-dominated modes are with a branching ratio of
order for and
for . The penguin-dominated decays with strangeness
in the meson, e.g., and , have appreciable rates and the mass
spectrum peaks at low mass. The penguin-dominated modes containing a strange
baryon, e.g., , have
branching ratios of order . In contrast, the decay
rate of is smaller. We explain why some of
charmless three-body final states in which baryon-antibaryon pair production is
accompanied by a meson have a larger rate than their two-body counterparts:
either the pole diagrams for the former have an anti-triplet bottom baryon
intermediate state, which has a large coupling to the meson and the
nucleon, or they are dominated by the factorizable external -emission
process.Comment: 46 pages and 3 figures, to appear in Phys. Rev. D. Major changes are:
(i) Calculations of two-body baryonic B decays involving a Delta resonance
are modified, and (ii) Penguin-dominated modes B-> Sigma+N(bar)+p are
discusse
Long-term culture captures injury-repair cycles of colonic stem cells
The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hop
Note on the paper of Fu and Wong on strictly pseudoconvex domains with K\"ahler--Einstein Bergman metrics
It is shown that the Ramadanov conjecture implies the Cheng conjecture. In
particular it follows that the Cheng conjecture holds in dimension two
- …
