19 research outputs found

    The Aharonov-Bohm Effect in the Fractional Quantum Hall Regime

    Full text link
    We have investigated experimentally resonant tunnelling through single-particle states formed around an antidot by a magnetic field, in the fractional quantum Hall regime. For 1/3 filling factor around the antidot, Aharonov-Bohm oscillations are observed with the same magnetic field period as in the integer quantum Hall regime. All our measurements are consistent with quasiparticles of fractional charge e*. However, the results are also consistent with particles of any charge (>= e*) as the system must rearrange every time the flux enclosed increases by h/e.Comment: Postscript, 4 pages, gzipped (350 kB

    Coulomb Charging Effects in an Open Quantum Dot

    Full text link
    Low-temperature transport properties of a lateral quantum dot formed by overlaying finger gates in a clean one-dimensional channel are investigated. Continuous and periodic oscillations superimposed upon ballistic conductance steps are observed, when the conductance G of the dot changes within a wide range 0<G<6e^2/h. Calculations of the electrostatics confirm that the measured periodic conductance oscillations correspond to successive change of the total charge of the dot by ee. By modelling the transport it is shown that the progression of the Coulomb oscillations into the region G>2e^2/h may be due to suppression of inter-1D-subband scattering. Fully transmitted subbands contribute to coherent background of conductance, while sequential tunneling via weakly transmitted subbands leads to Coulomb charging of the dot.Comment: 12 pages, RevTeX, 15 eps figures included, submitted to Phys. Rev.

    Experimental Evidence for Coulomb Charging Effects in an Open Quantum Dot at Zero Magnetic Field

    Full text link
    We have measured the low-temperature transport properties of an open quantum dot formed in a clean one-dimensional channel. For the first time, at zero magnetic field, continuous and periodic oscillations superimposed upon ballistic conductance steps are observed when the conductance through the dot GG exceeds 2e2/h2e^2/h. We ascribe the observed conductance oscillations to evidence for Coulomb charging effects in an open dot. This is supported by the evolution of the oscillating features for G>2e2/hG>2e^2/h as a function of both temperature and barrier transparency. Our results strongly suggest that at zero magnetic field, current theoretical and experimental understanding of Coulomb charging effects overlooks charging in the presence of fully transmitted 1D channels.Comment: To appear in Phys. Rev. Lett. 81 (Oct 19 issue

    Energy-time entanglement of quasi-particles in solid-state devices

    Full text link
    We present a proposal for the experimental observation of energy-time entanglement of quasi-particles in mesoscopic physics. This type of entanglement arises whenever correlated particles are produced at the same time and this time is uncertain in the sense of quantum uncertainty, as has been largely used in photonics. We discuss its feasibility for electron-hole pairs. In particular, we argue that the recently fabricated 2DEG-2DHG junctions, irradiated with a continuous laser, behave as "entanglers" for energy-time entanglement.Comment: 4 pages, 3 figure

    The physics and fabrication of low-dimensional hole systems

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D064223 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Phase coherence, interference, and conductance quantization in a confined two-dimensional hole gas

    Get PDF
    A system of two parallel constrictions in a two-dimensional hole gas has been studied. At zero magnetic-field conductance quantization is observed through the individual constrictions. At high magnetic fields Aharonov-Bohm oscillations result from resonant tunneling through states encircling the repulsive potential between the constrictions. The oscillations demonstrate directly phase-coherent transport of holes
    corecore