1,867 research outputs found

    Upper critical field in layered superconductors

    Full text link
    The theoretical statements about a restoration of a superconductivity at magnetic fields higher than the quasiclassical upper critical field and a reentrance of superconductivity at temperatures Tc(H)Tc(0)T_c(H)\approx T_c(0) in the superconductors with open Fermi surfaces are reinvestigated taking into account a scattering of quasiparticles on the impurities. The system of integral equations for determination of the upper critical field parallel to the conducting planes in a layered conventional and unconventional superconductors with impurities are derived. The Hc2(T)H_{c2}(T) values for the "clean" case in the Ginzburg-Landau regime and at any temperature in the "dirty" case are found analytically. The upper limit of the superconductor purity when the upper critical field definately has a finite value is established.Comment: 10 page

    Fermi Surface, Surface States, and Surface Reconstruction in Sr2RuO4

    Full text link
    The electronic structure of Sr2RuO4 is investigated by high angular resolution ARPES at several incident photon energies. We address the controversial issues of the Fermi surface (FS) topology and of the van Hove singularity at the M point, showing that a surface state and the replica of the primary FS due to (sqrt2 x sqrt2) surface reconstruction are responsible for previous conflicting interpretations. The FS thus determined by ARPES is consistent with the de Haas-van Alphen results, and it provides additional information on the detailed shape of the alpha, beta and gamma sheets.Comment: Final version for Physical Review Letters. Revtex, 4 pages, 4 postscript pictures embedded in the tex

    Anisotropy of magnetothermal conductivity in Sr2RuO4

    Full text link
    The dependence of in-plane and interplane thermal conductivities of Sr2RuO4 on temperature, as well as magnetic field strength and orientation, is reported. We found no notable anisotropy in the thermal conductivity for the magnetic field rotation parallel to the conducting plane in the whole range of experimental temperatures and fields, except in the vicinity of the upper critical field Hc2, where the anisotropy of the Hc2 itself plays a dominant role. This finding imposes strong constraints on the possible models of superconductivity in Sr2RuO4 and supports the existence of a superconducting gap with a line of nodes running orthogonal to the Fermi surface cylinder.Comment: published in Phys. Rev. Lett. 4pages, 4 eps figures, LaTe

    Influence of Hydrodynamic Interactions on the Kinetics of Colloidal Particle's Adsorption

    Full text link
    The kinetics of irreversible adsorption of spherical particles onto a flat surface is theoretically studied. Previous models, in which hydrodynamic interactions were disregarded, predicted a power-law behavior t2/3t^{-2/3} for the time dependence of the coverage of the surface near saturation. Experiments, however, are in agreement with a power-law behavior of the form t1/2t^{-1/2}. We outline that, when hydrodynamic interactions are considered, the assymptotic behavior is found to be compatible with the experimental results in a wide region near saturation.Comment: 4 pages, 1 figures, Phys. Rev. Lett. (in press

    Filling Control of the Mott Insulator Ca2RuO4

    Full text link
    We have grown single crystals of electron doping system Ca2-xLaxRuO4 (0.00 <= x <= 0.20) by a floating zone method. The first order metal/non-metal transition and canted antiferromagnetic ordering occur for 0.00 < x < 0.15, similar to those in the bandwidth controlled system Ca2-xSrxRuO4 (CSRO). However, comparing with CSRO, we found a rather different metallic ground state adjacent to the non-metallic ground state with canted antiferromagnetic order. Instead of short-range antiferromagnetic correlation found in CSRO (0.20 <= x < 0.50), the metallic ground state of the present system is characterized by strong ferromagnetic correlation.Comment: 8 pages, 8 figures (eps), submitted to J. Phys. Soc. Jp

    Tunnelling spectroscopy of the interface between Sr2RuO4 and a single Ru micro-inclusion in eutectic crystals

    Full text link
    The understanding of the zero bias conductance peak (ZBCP) in the tunnelling spectra of S/N junctions involving d-wave cuprate superconductors has been important in the determination of the phase structure of the superconducting order parameter. In this context, the involvement of a p-wave superconductor such as Sr2RuO4 in tunnelling studies is indeed of great importance. We have recently succeeded in fabricating devices that enable S/N junctions forming at interfaces between Sr2RuO4 and Ru micro-inclusions in eutectic crystals to be investigated.3 We have observed a ZBCP and have interpreted it as due to the Andreev bound state, commonly seen in unconventional superconductors. Also we have proposed that the onset of the ZBCP may be used to delineate the phase boundary for the onset of a time reversal symmetry broken (TRSB) state within the superconducting state, which does not always coincide with the onset of the superconducting state. However, these measurements always involved two interfaces between Sr2RuO4 and Ru. In the present study, we have extended the previous measurements to obtain a deeper insight into the properties of a single interface between Sr2RuO4 and Ru.Comment: To appear in J. Phys. Soc. Jpn. Vol. 75 No.12 issu

    Nonmagnetic Insulating States near the Mott Transitions on Lattices with Geometrical Frustration and Implications for κ\kappa-(ET)2_2Cu2(CN)3_2(CN)_3

    Full text link
    We study phase diagrams of the Hubbard model on anisotropic triangular lattices, which also represents a model for κ\kappa-type BEDT-TTF compounds. In contrast with mean-field predictions, path-integral renormalization group calculations show a universal presence of nonmagnetic insulator sandwitched by antiferromagnetic insulator and paramagnetic metals. The nonmagnetic phase does not show a simple translational symmetry breakings such as flux phases, implying a genuine Mott insulator. We discuss possible relevance on the nonmagnetic insulating phase found in κ\kappa-(ET)2_2Cu2(CN)3_2(CN)_3.Comment: 4pages including 7 figure

    Transport spin polarisation in SrRuO3 measured through Point Contact Andreev reflection

    Full text link
    We report a study in which Andreev reflection using a Nb point contact is used to measure the transport spin polarisation of the 4d itinerant ferromagnet SrRuO3. By performing the study in high quality thin films with residual resistivities less than 7micro-ohm-cm, we ensure that the study is done in the ballistic limit, a regime which is difficult to reach in oxide ferromagnets. The degree of transport spin polarisation that we find is comparable to that of the hole doped rare-earth manganites. We conclude that the large transport spin polarisation results mainly from a difference in the Fermi velocities between the majority and minority spin channels in this material.Comment: Text and 2 Figure

    Field-Orientation Dependent Heat Capacity Measurements at Low Temperatures with a Vector Magnet System

    Get PDF
    We describe a heat capacity measurement system for the study of the field-orientation dependence for temperatures down to 50 mK. A "Vector Magnet" combined with a mechanical rotator for the dewar enables the rotation of the magnetic field without mechanical heating in the cryostat by friction. High reproducibility of the field direction, as well as an angular resolution of better than 0.01 degree, is obtained. This system is applicable to other kinds of measurements which require a large sample space or an adiabatic sample environment, and can also be used with multiple refrigerator inserts interchangeably.Comment: 7 pages, 8 figure

    The graded Jacobi algebras and (co)homology

    Full text link
    Jacobi algebroids (i.e. `Jacobi versions' of Lie algebroids) are studied in the context of graded Jacobi brackets on graded commutative algebras. This unifies varios concepts of graded Lie structures in geometry and physics. A method of describing such structures by classical Lie algebroids via certain gauging (in the spirit of E.Witten's gauging of exterior derivative) is developed. One constructs a corresponding Cartan differential calculus (graded commutative one) in a natural manner. This, in turn, gives canonical generating operators for triangular Jacobi algebroids. One gets, in particular, the Lichnerowicz-Jacobi homology operators associated with classical Jacobi structures. Courant-Jacobi brackets are obtained in a similar way and use to define an abstract notion of a Courant-Jacobi algebroid and Dirac-Jacobi structure. All this offers a new flavour in understanding the Batalin-Vilkovisky formalism.Comment: 20 pages, a few typos corrected; final version to be published in J. Phys. A: Math. Ge
    corecore