1,721 research outputs found

    Renormalization approach to many-particle systems

    Full text link
    This paper presents a renormalization approach to many-particle systems. By starting from a bare Hamiltonian H=H0+H1{\cal H}= {\cal H}_0 +{\cal H}_1 with an unperturbed part H0{\cal H}_0 and a perturbation H1{\cal H}_1,we define an effective Hamiltonian which has a band-diagonal shape with respect to the eigenbasis of H0{\cal H}_0. This means that all transition matrix elements are suppressed which have energy differences larger than a given cutoff λ\lambda that is smaller than the cutoff Λ\Lambda of the original Hamiltonian. This property resembles a recent flow equation approach on the basis of continuous unitary transformations. For demonstration of the method we discuss an exact solvable model, as well as the Anderson-lattice model where the well-known quasiparticle behavior of heavy fermions is derived.Comment: 11 pages, final version, to be published in Phys. Rev.

    Kohn-Luttinger instability of the t-t' Hubbard model in two dimensions: variational approach

    Full text link
    An effective Hamiltonian for the Kohn-Luttinger superconductor is constructed and solved in the BCS approximation. The method is applied to the t-t' Hubbard model in two dimensions with the following results: (i) The superconducting phase diagram at half filling is shown to provide a weak-coupling analog of the recently proposed spin liquid state in the J_1-J_2 Heisenberg model. (ii) In the parameter region relevant for the cuprates we have found a nontrivial energy dependence of the gap function in the dominant d-wave pairing sector. The hot spot effect in the angular dependence of the superconducting gap is shown to be quite weak

    Actin-binding rho activating protein (Abra) is essential for fluid shear stress-induced arteriogenesis

    Get PDF
    OBJECTIVE: Arteriogenesis, the development of a collateral circulation, is important for tissue survival but remains functionally defective because of early normalization of fluid shear stress (FSS). Using a surgical model of chronically elevated FSS we showed that rabbits exhibited normal blood flow reserve after femoral artery ligature (FAL). Inhibition of the Rho pathway by Fasudil completely blocked the beneficial effect of FSS. In a genome-wide gene profiling we identified actin-binding Rho activating protein (Abra), which was highly upregulated in growing collaterals. METHODS AND RESULTS: qRT-PCR and Western blot confirmed highly increased FSS-dependent expression of Abra in growing collaterals. NO blockage by L-NAME abolished FSS-generated Abra expression as well as the whole arteriogenic process. Cell culture studies demonstrated an Abra-triggered proliferation of smooth muscle cells through a mechanism that requires Rho signaling. Local intracollateral adenoviral overexpression of Abra improved collateral conductance by 60% in rabbits compared to the natural response after FAL. In contrast, targeted deletion of Abra in CL57BL/6 mice led to impaired arteriogenesis. CONCLUSIONS: FSS-induced Abra expression during arteriogenesis is triggered by NO and leads to stimulation of collateral growth by smooth muscle cell proliferation

    Photon pressure induced test mass deformation in gravitational-wave detectors

    Get PDF
    A widely used assumption within the gravitational-wave community has so far been that a test mass acts like a rigid body for frequencies in the detection band, i.e. for frequencies far below the first internal resonance. In this article we demonstrate that localized forces, applied for example by a photon pressure actuator, can result in a non-negligible elastic deformation of the test masses. For a photon pressure actuator setup used in the gravitational wave detector GEO600 we measured that this effect modifies the standard response function by 10% at 1 kHz and about 100% at 2.5 kHz

    Dissipative Quantum Systems with Potential Barrier. General Theory and Parabolic Barrier

    Get PDF
    We study the real time dynamics of a quantum system with potential barrier coupled to a heat-bath environment. Employing the path integral approach an evolution equation for the time dependent density matrix is derived. The time evolution is evaluated explicitly near the barrier top in the temperature region where quantum effects become important. It is shown that there exists a quasi-stationary state with a constant flux across the potential barrier. This state generalizes the Kramers flux solution of the classical Fokker-Planck equation to the quantum regime. In the temperature range explored the quantum flux state depends only on the parabolic approximation of the anharmonic barrier potential near the top. The parameter range within which the solution is valid is investigated in detail. In particular, by matching the flux state onto the equilibrium state on one side of the barrier we gain a condition on the minimal damping strength. For very high temperatures this condition reduces to a known result from classical rate theory. Within the specified parameter range the decay rate out of a metastable state is calculated from the flux solution. The rate is shown to coincide with the result of purely thermodynamic methods. The real time approach presented can be extended to lower temperatures and smaller damping.Comment: 29 pages + 1 figure as compressed ps-file (uufiles) to appear in Phys. Rev.

    Robust Dropping Criteria for F-norm Minimization Based Sparse Approximate Inverse Preconditioning

    Full text link
    Dropping tolerance criteria play a central role in Sparse Approximate Inverse preconditioning. Such criteria have received, however, little attention and have been treated heuristically in the following manner: If the size of an entry is below some empirically small positive quantity, then it is set to zero. The meaning of "small" is vague and has not been considered rigorously. It has not been clear how dropping tolerances affect the quality and effectiveness of a preconditioner MM. In this paper, we focus on the adaptive Power Sparse Approximate Inverse algorithm and establish a mathematical theory on robust selection criteria for dropping tolerances. Using the theory, we derive an adaptive dropping criterion that is used to drop entries of small magnitude dynamically during the setup process of MM. The proposed criterion enables us to make MM both as sparse as possible as well as to be of comparable quality to the potentially denser matrix which is obtained without dropping. As a byproduct, the theory applies to static F-norm minimization based preconditioning procedures, and a similar dropping criterion is given that can be used to sparsify a matrix after it has been computed by a static sparse approximate inverse procedure. In contrast to the adaptive procedure, dropping in the static procedure does not reduce the setup time of the matrix but makes the application of the sparser MM for Krylov iterations cheaper. Numerical experiments reported confirm the theory and illustrate the robustness and effectiveness of the dropping criteria.Comment: 27 pages, 2 figure

    Landau's quasi-particle mapping: Fermi liquid approach and Luttinger liquid behavior

    Full text link
    A continuous unitary transformation is introduced which realizes Landau's mapping of the elementary excitations (quasi-particles) of an interacting Fermi liquid system to those of the system without interaction. The conservation of the number of quasi-particles is important. The transformation is performed numerically for a one-dimensional system, i.e. the worst case for a Fermi liquid approach. Yet evidence for Luttinger liquid behavior is found. Such an approach may open a route to a unified description of Fermi and Luttinger liquids on all energy scales.Comment: 4 pages, 3 figures included, final version to appear in Phys. Rev. Lett., references updated, slight re-focus on the treatment of all energy scale

    Generalized Courant-Snyder Theory for Charged-Particle Dynamics in General Focusing Lattices

    Get PDF
    The Courant-Snyder (CS) theory for one degree of freedom is generalized to the case of coupled transverse dynamics in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D sympletic rotation. The envelope equation, the transfer matrix, and the CS invariant of the original CS theory all have their counterparts, with remarkably similar expressions, in the generalized theory.open7

    Compression of Antiproton Clouds for Antihydrogen Trapping

    Full text link
    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma

    Status of the GEO600 gravitational wave detector

    Get PDF
    The GEO600 laser interferometric gravitational wave detector is approaching the end of its commissioning phase which started in 1995.During a test run in January 2002 the detector was operated for 15 days in a power-recycled michelson configuration. The detector and environmental data which were acquired during this test run were used to test the data analysis code. This paper describes the subsystems of GEO600, the status of the detector by August 2002 and the plans towards the first science run
    • 

    corecore