1,721 research outputs found
Renormalization approach to many-particle systems
This paper presents a renormalization approach to many-particle systems. By
starting from a bare Hamiltonian with an
unperturbed part and a perturbation ,we define an
effective Hamiltonian which has a band-diagonal shape with respect to the
eigenbasis of . This means that all transition matrix elements are
suppressed which have energy differences larger than a given cutoff
that is smaller than the cutoff of the original Hamiltonian. This
property resembles a recent flow equation approach on the basis of continuous
unitary transformations. For demonstration of the method we discuss an exact
solvable model, as well as the Anderson-lattice model where the well-known
quasiparticle behavior of heavy fermions is derived.Comment: 11 pages, final version, to be published in Phys. Rev.
Kohn-Luttinger instability of the t-t' Hubbard model in two dimensions: variational approach
An effective Hamiltonian for the Kohn-Luttinger superconductor is constructed
and solved in the BCS approximation. The method is applied to the t-t' Hubbard
model in two dimensions with the following results: (i) The superconducting
phase diagram at half filling is shown to provide a weak-coupling analog of the
recently proposed spin liquid state in the J_1-J_2 Heisenberg model. (ii) In
the parameter region relevant for the cuprates we have found a nontrivial
energy dependence of the gap function in the dominant d-wave pairing sector.
The hot spot effect in the angular dependence of the superconducting gap is
shown to be quite weak
Actin-binding rho activating protein (Abra) is essential for fluid shear stress-induced arteriogenesis
OBJECTIVE: Arteriogenesis, the development of a collateral circulation, is important for tissue survival but remains functionally defective because of early normalization of fluid shear stress (FSS). Using a surgical model of chronically elevated FSS we showed that rabbits exhibited normal blood flow reserve after femoral artery ligature (FAL). Inhibition of the Rho pathway by Fasudil completely blocked the beneficial effect of FSS. In a genome-wide gene profiling we identified actin-binding Rho activating protein (Abra), which was highly upregulated in growing collaterals. METHODS AND RESULTS: qRT-PCR and Western blot confirmed highly increased FSS-dependent expression of Abra in growing collaterals. NO blockage by L-NAME abolished FSS-generated Abra expression as well as the whole arteriogenic process. Cell culture studies demonstrated an Abra-triggered proliferation of smooth muscle cells through a mechanism that requires Rho signaling. Local intracollateral adenoviral overexpression of Abra improved collateral conductance by 60% in rabbits compared to the natural response after FAL. In contrast, targeted deletion of Abra in CL57BL/6 mice led to impaired arteriogenesis. CONCLUSIONS: FSS-induced Abra expression during arteriogenesis is triggered by NO and leads to stimulation of collateral growth by smooth muscle cell proliferation
Photon pressure induced test mass deformation in gravitational-wave detectors
A widely used assumption within the gravitational-wave community has so far
been that a test mass acts like a rigid body for frequencies in the detection
band, i.e. for frequencies far below the first internal resonance. In this
article we demonstrate that localized forces, applied for example by a photon
pressure actuator, can result in a non-negligible elastic deformation of the
test masses. For a photon pressure actuator setup used in the gravitational
wave detector GEO600 we measured that this effect modifies the standard
response function by 10% at 1 kHz and about 100% at 2.5 kHz
Dissipative Quantum Systems with Potential Barrier. General Theory and Parabolic Barrier
We study the real time dynamics of a quantum system with potential barrier
coupled to a heat-bath environment. Employing the path integral approach an
evolution equation for the time dependent density matrix is derived. The time
evolution is evaluated explicitly near the barrier top in the temperature
region where quantum effects become important. It is shown that there exists a
quasi-stationary state with a constant flux across the potential barrier. This
state generalizes the Kramers flux solution of the classical Fokker-Planck
equation to the quantum regime. In the temperature range explored the quantum
flux state depends only on the parabolic approximation of the anharmonic
barrier potential near the top. The parameter range within which the solution
is valid is investigated in detail. In particular, by matching the flux state
onto the equilibrium state on one side of the barrier we gain a condition on
the minimal damping strength. For very high temperatures this condition reduces
to a known result from classical rate theory. Within the specified parameter
range the decay rate out of a metastable state is calculated from the flux
solution. The rate is shown to coincide with the result of purely thermodynamic
methods. The real time approach presented can be extended to lower temperatures
and smaller damping.Comment: 29 pages + 1 figure as compressed ps-file (uufiles) to appear in
Phys. Rev.
Robust Dropping Criteria for F-norm Minimization Based Sparse Approximate Inverse Preconditioning
Dropping tolerance criteria play a central role in Sparse Approximate Inverse
preconditioning. Such criteria have received, however, little attention and
have been treated heuristically in the following manner: If the size of an
entry is below some empirically small positive quantity, then it is set to
zero. The meaning of "small" is vague and has not been considered rigorously.
It has not been clear how dropping tolerances affect the quality and
effectiveness of a preconditioner . In this paper, we focus on the adaptive
Power Sparse Approximate Inverse algorithm and establish a mathematical theory
on robust selection criteria for dropping tolerances. Using the theory, we
derive an adaptive dropping criterion that is used to drop entries of small
magnitude dynamically during the setup process of . The proposed criterion
enables us to make both as sparse as possible as well as to be of
comparable quality to the potentially denser matrix which is obtained without
dropping. As a byproduct, the theory applies to static F-norm minimization
based preconditioning procedures, and a similar dropping criterion is given
that can be used to sparsify a matrix after it has been computed by a static
sparse approximate inverse procedure. In contrast to the adaptive procedure,
dropping in the static procedure does not reduce the setup time of the matrix
but makes the application of the sparser for Krylov iterations cheaper.
Numerical experiments reported confirm the theory and illustrate the robustness
and effectiveness of the dropping criteria.Comment: 27 pages, 2 figure
Landau's quasi-particle mapping: Fermi liquid approach and Luttinger liquid behavior
A continuous unitary transformation is introduced which realizes Landau's
mapping of the elementary excitations (quasi-particles) of an interacting Fermi
liquid system to those of the system without interaction. The conservation of
the number of quasi-particles is important. The transformation is performed
numerically for a one-dimensional system, i.e. the worst case for a Fermi
liquid approach. Yet evidence for Luttinger liquid behavior is found. Such an
approach may open a route to a unified description of Fermi and Luttinger
liquids on all energy scales.Comment: 4 pages, 3 figures included, final version to appear in Phys. Rev.
Lett., references updated, slight re-focus on the treatment of all energy
scale
Generalized Courant-Snyder Theory for Charged-Particle Dynamics in General Focusing Lattices
The Courant-Snyder (CS) theory for one degree of freedom is generalized to the case of coupled transverse dynamics in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D sympletic rotation. The envelope equation, the transfer matrix, and the CS invariant of the original CS theory all have their counterparts, with remarkably similar expressions, in the generalized theory.open7
Compression of Antiproton Clouds for Antihydrogen Trapping
Control of the radial profile of trapped antiproton clouds is critical to
trapping antihydrogen. We report the first detailed measurements of the radial
manipulation of antiproton clouds, including areal density compressions by
factors as large as ten, by manipulating spatially overlapped electron plasmas.
We show detailed measurements of the near-axis antiproton radial profile and
its relation to that of the electron plasma
Status of the GEO600 gravitational wave detector
The GEO600 laser interferometric gravitational wave detector is approaching the end of its commissioning phase which started in 1995.During a test run in January 2002 the detector was operated for 15 days in a power-recycled michelson configuration. The detector and environmental data which were acquired during this test run were used to test the data analysis code. This paper describes the subsystems of GEO600, the status of the detector by August 2002 and the plans towards the first science run
- âŠ