14 research outputs found

    2020 Clinical practice guidelines for Myocarditis in adults

    Get PDF
    Russian Society of Cardiology (RSC)With the participation: Eurasian Association of Therapists (EUAT), Society of Specialists in Heart Failure (OSSN), Russian Scientific Medical Society of Therapists (RNMOT), Russian Society of Pathologists, Russian Society of Radiologists and Radiologists (RSR)Endorsed by: Research and Practical Council of the Ministry of Health of the Russian Federatio

    Magma paths at Piton de la Fournaise Volcano

    No full text
    International audienceSeveral patterns of magma paths have been proposed since the 1980s for Piton de la Fournaise volcano. Given the significant differences, which are presented here, we propose a reappraisal of the magma intrusion paths using a 17-years-long database of volcano-tectonic seismic events and a detailed mapping of the scoria cones. At the edifice scale, the magma propagates along two N120 trending rift zones. They are wide, linear, spotted by small to large scoria cones and related lava flows and involving magma resulting from high-pressure fractionation of ol ± cpx and presents an eruption periodicity of around 200 years over the last 30 kiloyears. The upper plumbing system originates at the base of the edifice below the Enclos Fouqué caldera. It feeds frequent (1 eruption every 9 months on average), short-lived summit and distal (flank) eruptions along summit and outer rift zones, respectively. Summit rift zones are short and present an orthogonal pattern restricted to the central active cone of Piton de la Fournaise whereas outer rift zones extend from inside the Enclos Fouqué caldera to the NE and SE volcano flanks. To sum up, rift zones of Piton de la Fournaise present strong geometrical and dynamical differences. On the one hand, the lower plumbing system feeds rift zones showing striking similarities to those developed in Hawaii during the alkaline postshield stage. On the other hand, the rift zones connected to upper plumbing system can be compared the rift system of Mount Etna, whose dynamics is know to be linked with the lateral displacement of the east flank

    On the geothermal potential of crustal fault zones: a case study from the Pontgibaud area (French Massif Central, France)

    Get PDF
    International audienceThe present study aims to understand the potential of a new and novel type of geothermal play system for high temperature and electricity production: crustal fault zones (CFZ). According to geological and geophysical data, the Pontgibaud fault zone (French Massif Central) is suspected to host an active hydrothermal system at a depth of a few kilometers. The deep geometry of the fault zone and the permeability distribution are the main unknown parameters that are required to assess the geothermal potential of the Pontgibaud site. Structural and thin-section observations, laboratory permeability and connected porosity measurements and X-ray micro-tomography observations suggest that the hydrothermal system behaves like a double matrix-fracture permeability reservoir. Numerical modeling in which we varied the fault dip and the ratio between the fault zone permeability and host rock, R, was performed. Results indicate that three main convective regimes can be identified (weak convection, single cellular-type convection and bicellular convection). For a sufficiently high fault zone permeability (> 1 × 10−15 m2), buoyancy-driven flow creates a positive thermal anomaly of several tens of °C at a depth of 2–5 km. For a vertical fault zone, the thermal anomaly is larger for higher R values. Numerical models, then applied to the geologically constrained Pontgibaud fault zone, show that a temperature of 150 °C at a depth of 2500 m can be obtained for a fault zone permeability of 1.6 × 10−14 m2. Based on a multi-disciplinary approach, this work establishes a potential predictive tool for future high-temperature geothermal operations within basement rocks hosting large-scale fault systems

    Structural, lithological, and geodynamic controls on geothermal activity in the Menderes geothermal Province (Western Anatolia, Turkey)

    No full text
    corecore