10,508 research outputs found

    Direct observation of charge order in triangular metallic AgNiO2 by single-crystal resonant X-ray scattering

    Full text link
    We report resonant X-ray scattering measurements on the orbitally-degenerate triangular metallic antiferromagnet 2H-AgNiO2 to probe the spontaneous transition to a triple-cell superstructure at temperatures below 365 K. We observe a strong resonant enhancement of the supercell reflections through the Ni K-edge. The empirically extracted K-edge shift between the crystallographically-distinct Ni sites of 2.5(3) eV is much larger than the value expected from the shift in final states, and implies a core-level shift of ~1 eV, thus providing direct evidence for the onset of spontaneous honeycomb charge order in the triangular Ni layers. We also provide band-structure calculations that explain quantitatively the observed edge shifts in terms of changes in the Ni electronic energy levels due to charge order and hybridization with the surrounding oxygens.Comment: 5 pages, 4 figure

    Neel order, quantum spin liquids and quantum criticality in two dimensions

    Full text link
    This paper is concerned with the possibility of a direct second order transition out of a collinear Neel phase to a paramagnetic spin liquid in two dimensional quantum antiferromagnets. Contrary to conventional wisdom, we show that such second order quantum transitions can potentially occur to certain spin liquid states popular in theories of the cuprates. We provide a theory of this transition and study its universal properties in an ϵ\epsilon expansion. The existence of such a transition has a number of interesting implications for spin liquid based approaches to the underdoped cuprates. In particular it considerably clarifies existing ideas for incorporating antiferromagnetic long range order into such a spin liquid based approach.Comment: 18 pages, 17 figure

    Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model

    Full text link
    Dynamics of earthquake nucleation process is studied on the basis of the one-dimensional Burridge-Knopoff (BK) model obeying the rate- and state-dependent friction (RSF) law. We investigate the properties of the model at each stage of the nucleation process, including the quasi-static initial phase, the unstable acceleration phase and the high-speed rupture phase or a mainshock. Two kinds of nucleation lengths L_sc and L_c are identified and investigated. The nucleation length L_sc and the initial phase exist only for a weak frictional instability regime, while the nucleation length L_c and the acceleration phase exist for both weak and strong instability regimes. Both L_sc and L_c are found to be determined by the model parameters, the frictional weakening parameter and the elastic stiffness parameter, hardly dependent on the size of an ensuing mainshock. The sliding velocity is extremely slow in the initial phase up to L_sc, of order the pulling speed of the plate, while it reaches a detectable level at a certain stage of the acceleration phase. The continuum limits of the results are discussed. The continuum limit of the BK model lies in the weak frictional instability regime so that a mature homogeneous fault under the RSF law always accompanies the quasi-static nucleation process. Duration times of each stage of the nucleation process are examined. The relation to the elastic continuum model and implications to real seismicity are discussed.Comment: Title changed. Changes mainly in abstract and in section 1. To appear in European Physical Journal

    Model Independent Extraction of Vbc|V_{\rm bc}| Without Heavy Quark Symmetry

    Full text link
    A new method to extract Vbc|V_{\rm bc}| is proposed based on a sum--rule for semileptonic decays of the BB meson. The method relies on much weaker assumptions than previous approaches which are based on heavy--quark symmetry. This sum--rule only relies on the assumption that the virtual ccc \overline{c} pair content of the BB meson can be neglected. The extraction of the CKM matrix element also requires that the sum--rule saturates in the kinematically accessible region.Comment: 10 pages revtex3 manuscript. No figures, U. of MD PP #94--086. With our apologies, some innocuous errors corrected and some references added that had been brought to our attentio

    A Novel UV Photon Detector with Resistive Electrodes

    Full text link
    In this study we present first results from a new detector of UV photons: a thick gaseous electron multiplier (GEM) with resistive electrodes, combined with CsI or CsTe/CsI photocathodes. The hole type structure considerably suppresses the photon and ion feedback, whereas the resistive electrodes protect the detector and the readout electronics from damage by any eventual discharges. This device reaches higher gains than a previously developed photosensitive RPC and could be used not only for the imaging of UV sources, flames or Cherenkov light, for example, but also for the detection of X-rays and charged particles.Comment: Presented at the International Workshop on Resistive Plate Chambers, Korea, October 200

    Fourfold oscillations and anomalous magnetic irreversibility of magnetoresistance in the non-metallic regime of Pr1.85Ce0.15CuO4

    Full text link
    Using magnetoresistance measurements as a function of applied magnetic field and its direction of application, we present sharp angular-dependent magnetoresistance oscillations for the electron-doped cuprates in their low-temperature non-metallic regime. The presence of irreversibility in the magnetoresistance measurements and the related strong anisotropy of the field dependence for different in-plane magnetic field orientations indicate that magnetic domains play an important role for the determination of electronic properties. These domains are likely related to the stripe phase reported previously in hole-doped cuprates.Comment: 11 pages, 5 figure

    Eigenstate Structure in Graphs and Disordered Lattices

    Full text link
    We study wave function structure for quantum graphs in the chaotic and disordered regime, using measures such as the wave function intensity distribution and the inverse participation ratio. The result is much less ergodicity than expected from random matrix theory, even though the spectral statistics are in agreement with random matrix predictions. Instead, analytical calculations based on short-time semiclassical behavior correctly describe the eigenstate structure.Comment: 4 pages, including 2 figure

    The mean energy, strength and width of triple giant dipole resonances

    Get PDF
    We investigate the mean energy, strength and width of the triple giant dipole resonance using sum rules.Comment: 12 page

    Big Bluestem and Indiangrass from Remnant Prairies: Plant Biomass and Adaptation

    Get PDF
    Big bluestem (Andropogon gerardii Vitman) and indiangrass (Sorghastrum nutans L.) were collected from remnant Midwestern prairies and evaluated as individual prairie accessions in replicated space-transplanted nurseries near Mead, NE, Ames, IA, and West Lafayette, IN. The objective was to determine the extent of differences among the accessions for plant biomass (g plant−1) and biomass quality, the extent of strain x location interactions, and the relationship between geographical locations of collection sites and evaluation locations for plant biomass production. Plant biomass has been used previously as a measure of plant adaptation and fitness. Big bluestem and indiangrass accessions differed significantly (P \u3c 0.05) for plant biomass at all locations. Strain mean squares for plant biomass were 10´ greater than strain x location effects for big bluestem and were not significant for indiangrass, indicating a general lack of specific adaptation across the Midwest. Accessions were identified that had high plant biomass at all three locations. These accessions should have value in breeding programs and for use in revegetation. Regression analyses were used to test the effect of north-to-south, east-to-west, and direct distances between the collection sites and the evaluation locations on plant biomass. The most important distance effects were the north-to-south effects, which were significant for plant biomass for big bluestem at all locations and for indiangrass at West Lafayette. Moving northern big bluestem accessions south resulted in reduced plant biomass, with the opposite effect when southern accessions were moved north. Results support the regional adaptation of the best accessions and cultivars for these grasses
    corecore