53 research outputs found
Current Profiles of Molecular Nanowires; DFT Green Function Representation
The Liouville-space Green function formalism is used to compute the current
density profile across a single molecule attached to electrodes. Time ordering
is maintained in real, physical, time, avoiding the use of artificial time
loops and backward propagations. Closed expressions for molecular currents,
which only require DFT calculations for the isolated molecule, are derived to
fourth order in the molecule/electrode coupling.Comment: 21 page
Shock pressure induced by 0.44 [mu]m laser radiation on aluminum targets
Shock pressure generated in aluminum targets due to the interaction
of 0.44 μm (3 ω of iodine laser) laser radiation has been
studied. The laser intensity profile was smoothed using phase zone
plates. Aluminum step targets were irradiated at an intensity
I ≈ 1014 W/cm2. Shock velocity in
the aluminum target was estimated by detecting the shock luminosity
from the target rear using a streak camera to infer the shock pressure.
Experimental results show a good agreement with the theoretical model
based on the delocalized laser absorption approximation. In the present
report, we explicitly discuss the importance of target thickness on the
shock pressure scaling
Pathways of electron transfer in Escherichia coli DNA photolyase: Trp306 to FADH.
We describe the results of a series of theoretical calculations of electron transfer pathways between Trp306 and *FADH. in the Escherichia coli DNA photolyase molecule, using the method of interatomic tunneling currents. It is found that there are two conformationally orthogonal tryptophans, Trp359 and Trp382, between donor and acceptor that play a crucial role in the pathways of the electron transfer process. The pathways depend vitally on the aromaticity of tryptophans and the flavin molecule. The results of this calculation suggest that the major pathway of the electron transfer is due to a set of overlapping orthogonal pi-rings, which starts from the donor Trp306, runs through Trp359 and Trp382, and finally reaches the flavin group of the acceptor complex, FADH
- …