100 research outputs found

    Topographic controls on dike injection in volcanic rift zones

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 246 (2006): 188-196, doi:10.1016/j.epsl.2006.04.005.Dike emplacement in volcanic rift zones is often associated with the injection of “bladelike” dikes, which propagate long distances parallel to the rift, but frequently remain trapped at depth and erupt only near the tip of the dike. Over geologic time, this style of dike injection implies that a greater percentage of extension is accommodated by magma accretion at depth than near the surface. In this study, we investigate the evolution of faulting, topography, and stress state in volcanic rift zones using a kinematic model for dike injection in an extending 2-D elastic-viscoplastic layer. We show that the intrusion of blade-like dikes focuses deformation at the rift axis, leading to the formation of an axial rift valley. However, flexure associated with the development of the rift topography generates compression at the base of the plate. If the magnitude of these deviatoric compressive stresses exceeds the deviatoric tensile stress associated with far-field extension, further dike injection will be inhibited. In general, this transition from tensile to compressive deviatoric stresses occurs when the rate of accretion in the lower crust is greater than 50-60% of the far-field extension rate. These results indicate that over geologic time-scales the injection of blade-like dikes is a self-limiting process in which dike-generated faulting and topography result in an efficient feedback mechanism that controls the time-averaged distribution of magma accretion within the crust.Funding for this research was provided by NSF Grants OCE 04-43246, OCE 05-50147, OCE 02-42597 and OCE 04-26575, and a Carnegie Postdoctoral Fellowship to M.B

    Strain field analysis on Montserrat (W.I.) as tool for assessing permeable flow paths in the magmatic system of Soufrière Hills Volcano

    Get PDF
    Strain dilatometers have been operated on the volcanic island of Montserrat (West Indies) for more than a decade and have proven to be a powerful technique to approach short-term dynamics in the deformational field in response to pressure changes in the magmatic system of the andesitic dome-building Soufrière Hills Volcano (SHV). We here demonstrate that magmatic activity in each of the different segments of the SHV magmatic system (shallow dyke-conduit, upper and lower magma chambers) generates a characteristic strain pattern that allows the identification of operating sources in the plumbing system based on a simple scheme of amplitude ratios. We use this method to evaluate strain data from selected Vulcanian explosions and gas emission events that occurred at SHV between 2003 and 2012. Our results show that the events were initiated by a short phase of contraction of either one or both magma chambers and a simultaneous inflation of the shallow feeder system. The initial phase of the events usually lasted only tens to hundreds of seconds before the explosion/gas emission started and the system recovered. The short duration of this process points at rapid transport of fluids rather than magma ascent to generate the pressure changes. We suggest the propagation of tensile hydraulic fractures as viable mechanism to provide a pathway for fluid migration in the magmatic system at the observed time scale. Fluid mobilization was initiated by a sudden destabilization of large pockets of already segregated fluid in the magma chambers. Our study demonstrates that geodetic observables can provide unprecedented insights into complex dynamic processes within a magmatic system commonly assessed by theoretical modeling and petrologic observations. Key Points Strain data analysis from explosions/degassing events at Soufriere Hills Volcano Pressure release deep within the magmatic system sec-min prior to events Rapid gas rise from magma reservoir to surface via tensile hydraulic fractures © 2014. American Geophysical Union. All Rights Reserved

    Thermal and dynamical evolution of the upper mantle in subduction zones

    No full text
    We present results from two-dimensional (2-D) numerical experiments on the thermal and dynamical evolution of the subducting slab and of the overlying mantle wedge for a range in subduction parameters. These include subduction rate and the age and rheology of both subducting and overriding plates. Experiments also consider the influence of slab forcing conditions (from purely kinematic to purely dynamic) on the evolution of both the slab and mantle wedge. One goal is to determine how different parameters control thermal evolution of the slab-wedge interface, from just after subduction initiation up through roughly 500-600 km of subduction, where temperatures are approaching steady state. An additional goal is to define optimal conditions for the melting of slab sediments and crust. Results show slab surface temperatures (SSTs) depend strongly on subduction velocity, plate thermal structure, and upper mantle (or wedge) viscosity structure. Fast subduction beneath a thick (\u3e70 km) overriding plate results in the coolest SSTs. Maximum SSTs arc recorded as an early transient event for cases of slow subduction (\u3c3 cm/yr) beneath young, thin lithosphere (\u3c45 km). The latter result supports a model for melting of slab sediments, and possibly crust, early on in cases where young plates subduct beneath thin lithosphere, such as in the Cascades. Maximum wedge temperatures are recorded at higher subduction rates and arc found to be strongly dependent on factors influencing return flow into the wedge, such as age of the overriding plate and the ratio of retrograde to longitudinal slab motion. Assuming a model for arc magma genesis driven by fluids migrating into the wedge, these results predict higher-temperature, Mg-rich melts coming up beneath subduction zones with fast, steep slabs and young overriding plates, such as in Japan. The influence of variable viscosity is most pronounced in the slab-wedge corner, which tends to stagnate, or freeze out, with time. Moreover, a region of highly viscous mantle develops above the slab at intermediate depths (\u3e100 km) which deflects the zone of maximum shear away from slab-wedge interface
    corecore