34 research outputs found

    THE HIALINE PROJECT: ALLERGEN RELEASE FROM POLLEN ACROSS 10 EUROPEAN COUNTRIES

    Get PDF
    Exposure to allergens is one of severa1 factors determining sensitization and allergic symptoms in individuals. Exposure to aeroallergens from pollen is assessed by counting allergenic pollen in ambient air. However, proof is lacking that pollen count is representative for allergen exposure. We therefore monitored simultaneously birch, grass and olive pollen counts and their corresponding major pollen allergens Bet v 1, Phl p 5 and Ole e 1 across Europe. Already at one location in Europe in Munich, Germany, it has been found that the same amount of pollen from different years, different trees and even different days released up to lO-fold different amounts of Bet v 1. Thus exposure to allergen is poorly monitored by only monitoring pollen countl-2. Monitoring the allergen itself in ambient air might be an improvement in allergen exposure assessment. The objective of the HIALINE-project is to evaluate if these effects found in Munich, Germany are also measurable over a bigger geographic area like Europe, and at the same time implement an outdoor allergen early warning network, in addition to the pollen forecasts. Climatic factors that influence allergen exposure will be extracted and will be used to calculate the effect of climate change on local airborne allergen exposure. The major allergens from the top 3 airborne allergens in Europe (grasses, birch and olive) are sampled with a cascade impactor, extracted and analyzed by allergen specific ELISA 's. Pollen counts are measured by standard pollen traps and correlated with the weather data. Allergen forecast will be calculated by incorporating the SILAM chemical transport model and compared with the observations of HIALINE aiming at a comprehensive parameterization of the allergen release and transport. Expected outcomes are the implementation of a network of European outdoor allergen measurements to better predict allergic symptoms. Also the climatic factors that govern allergen exposure in outdoor air will be established. These can be used to calculate the effect of climate change on the health effects of airborne allergens The research leading to these results has received funding from the Executive Agency for Health and Consumers under grant agreement No 2008 11 07

    The European project HIALINE (Health Impacts of Airborne Allergen Information Network): results of pollen and allergen of Betula monitoring in Parma (2009)

    Get PDF
    Introduction. Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content in ambient air is unknown. HIALINE therefore monitored atmospheric concentrations of Betula, Poaceae and Olea pollen grains and matched their major allergens Bet v1, Phl p5 and Ole e1 across Europe. Monitoring the allergens themselves together with pollen in ambient air might be an improvement in allergen exposure assessment. New knowledge through the use of new experimental approaches in the field of aerobiological monitoring will enable better in the prevention and clinical management of pollinosis. In order to disseminate the knowledge of the project we present the results of first year of birch pollen grains and the matched major pollen allergen Bet v1 monitored in Parma (UNIPR), Italy with a short reference to the results obtained by the other participants and about developing models of dissemination and forecasts of pollen and allergens. Materials and methods. The pollen was sampled by a Hirst pollen trap. Allergens was collected with a CHEMVOL® high-volume cascade impactor, extracted from pollen and quantified by ELISA. Antibodies for analysis of Bet v1 are delivered by the industrial partner in this project. Quality control has been carried out for the monitoring pollen activities and allergen concentrations. Results. The project has highlighted that it is possible also to measure pollen allergen in ambient air in different European areas. The results obtained from the center of Parma and other European partners have highlighted the different allergenic powers of pollen of Betula, in different geographical areas. Moreover, daily in each area the allergenic power of pollen grains was very variable. Discussion. HIALINE has been a very important project to understand the mechanisms of sensitization, clinical management of pollinosis and to improve immunotherapy towards a tailored immunotherapy. The results of the project will help medical doctors, authorities and patients, to better manage the different aspects related to pollinosis

    Outdoor airborne allergens: Characterization, behavior and monitoring in Europe

    Get PDF
    Aeroallergens or inhalant allergens, are proteins dispersed through the air and have the potential to induce allergic conditions such as rhinitis, conjunctivitis, and asthma. Outdoor aeroallergens are found predominantly in pollen grains and fungal spores, which are allergen carriers. Aeroallergens from pollen and fungi have seasonal emission patterns that correlate with plant pollination and fungal sporulation and are strongly associated with atmospheric weather conditions. They are released when allergen carriers come in contact with the respiratory system, e.g. the nasal mucosa. In addition, due to the rupture of allergen carriers, airborne allergen molecules may be released directly into the air in the form of micronic and submicronic particles (cytoplasmic debris, cell wall fragments, droplets etc.) or adhered onto other airborne particulate matter. Therefore, aeroallergen detection strategies must consider, in addition to the allergen carriers, the allergen molecules themselves. This review article aims to present the current knowledge on inhalant allergens in the outdoor environment, their structure, localization, and factors affecting their production, transformation, release or degradation. In addition, methods for collecting and quantifying aeroallergens are listed and thoroughly discussed. Finally, the knowledge gaps, challenges and implications associated with aeroallergen analysis are describe

    Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1

    Get PDF
    Pollen is routinely monitored, but it is unknown whether pollen counts represent allergen exposure. We therefore simultaneously determined olive pollen and Ole e 1 in ambient air in C ordoba, Spain, and Evora, Portugal, using Hirst-type traps for pollen and high-volume cascade impactors for allergen. Pollen from different days released 12-fold different amounts of Ole e 1 per pollen (both locations P < 0.001). Average allergen release from pollen (pollen potency) was much higher in C ordoba (3.9 pg Ole e 1/pollen) than in Evora (0.8 pg Ole e 1/pollen, P = 0.004). Indeed, yearly olive pollen counts in C ordoba were 2.4 times higher than in Evora, but Ole e 1 concentrations were 7.6 times higher. When modeling the origin of the pollen, >40% of Ole e 1 exposure in Evora was explained by high-potency pollen originating from the south of Spain. Thus, olive pollen can vary substantially in allergen release, even though they are morphologically identical

    Recommended Terminology for Aerobiological Studies

    Get PDF
    Aerobiology is an interdisciplinary science where researchers with different backgrounds are involved in different topics related to microorganism, airborne biological particles, e.g. pollen and spores, and phenology. Some concepts, words or expressions used in aerobiology have a clear definition, but are however frequently misused. Therefore, the working group “Quality Control” of the European Aerobiology Society (EAS) and the International Association of Aerobiology (IAA) would like to clarify some of them, their use and presentation

    Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    Get PDF
    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 I min(-1) at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 I min(-1) with a Chemvol (R) high-volume cascade impactor equipped with stages PM > 10 mu m, 10 mu m > PM > 2.5 mu m, and in Germany also 2.5 mu m > PM > 0.12 mu m. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FC epsilon R1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 mu m fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different isoforms, its fingerprint is constant across Europe. Bet v 1 was also exclusively linked to pollen. Pollen from different days varied >10-fold in allergen release. Thus exposure to allergen is inaccurately monitored by only monitoring birch pollen grains. Indeed, a humanized basophil activation test correlated much better with allergen concentrations in ambient air than with pollen count. Monitoring the allergens themselves together with pollen in ambient air might be an improvement in allergen exposure assessment.European CommissionChristine Kühne - Center for Allergy Research and Educatio

    Automatic detection of airborne pollen: an overview

    Get PDF
    Pollen monitoring has traditionally been carried out using manual methods frst developed in the early 1950s. Although this technique has been recently standardised, it sufers from several drawbacks, notably data usually only being available with a delay of 3–9 days and usually delivered at a daily resolution. Several automatic instruments have come on to the market over the past few years, with more new devices also under development. This paper provides a comprehensive overview of all available and developing automatic instruments, how they measure, how they identify airborne pollen, what impacts measurement quality, as well as what potential there is for further advancement in the feld of bioaerosol monitoring.</p

    Analysis of high allergenicity airborne pollen dispersion: common ragweed study case in Lithuania

    No full text
    The appearance of ragweed pollen in the air became more frequent in northerly countries. Attention of allergologists and aerobiologists in these countries is focused on the phenomenon that Ambrosia plants found relatively sporadic but the amount of pollen is high in particular days. Over the latter decade, a matter of particular concern has been Ambrosia pollen, whose appearance in the air is determined by the plants dispersing it and meteorological processes that alter pollen release, dissemination, transport or deposition on surfaces. Pollen data used in this study were collected in three pollentrapping sites in Lithuania. The data corresponding to 2006-2011 years of pollen monitoring were documented graphically and evaluated statistically. Analysis of the pollen data suggests that although the number of ragweed plants identified has not increased over the latter decade, the total pollen count has been on the increase during the recent period. The highest atmospheric pollen load is established on the last days of August and first days of September. The estimated effect of meteorological parameters on pollen dispersal in the air showed that in Lithuania ragweed pollen is recorded when the relative air humidity is about 70%, and the minimal air temperature is not less than 12°C. Analysis of wind change effect on pollen count indicates that pollen is most often recorded in the air when the changes in wind speed are low (1-2 m/s). We have established a regularity exhibiting an increase in ragweed pollen count conditioned by south-eastern winds in Lithuania

    Release of Bet v 1 from Birch Pollen 1 from 5 European 2 Countries. Results from the HIALINE Study

    Get PDF
    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grain and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 l/min at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800l/min with a Chemvol high-volume cascade impactor equipped with stages PM>10μm, 10 μm>PM>2.5μm, and in Germany also 2.5 μm>PM>0.12μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcεR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen lmptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM>10μm fraction at all stations. Bet v 1 isoforms pattern did not varied substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different isoforms, its fingerprint is constant across Europe. Bet v 1 was also exclusively linked to pollen. Pollen from different days varied >10-fold in allergen release. Thus exposure to allergen is inaccurately monitored by only monitoring birch pollen grains. Indeed, a humanized basophil activation test correlated much better with allergen concentrations in ambient air than with pollen count. Monitoring the allergens themselves together with pollen in ambient air might be an improvement in allergen exposure assessment

    Hialine Project: allergen release from pollen across Europe

    No full text
    ln general it has been observed similar profiles lor airborne pollen and aeroallergens content in the air, being aeroal/ergens more associated to XL Iraction stage. On the olher hand, ii has been delected al/ergenic activity out Irom pol/en season, especiaily in the case 01 M stage. Smaller particles are more exposed to medium-Iong distant transporto Moreover, results have provides strong evidence that similar value 01 airbome pol/en evokes different ambient air allergen loads in different geographicai areas. Even more, when lhe same area is considered the allergen load of the pol/en can vary within lhe season. Pollen differs in allergen release between European countries. Our sludy suoports lhe importance 01 lhe aeroal/ergen quantificatlon logether wilh airborne pol/en counls, in order to define the ouldoor air allergenic load. Conclusions: Under these results, the expected outcomes are lhe implementation 01 a network of European outdoor allergen measurements to belter predict allergic symploms. Also lhe climafic lactors that govem allergen exposure in ouldoor air will be eslablished. These can be used lo calculate the effect 01 climate change on lhe health effecls 01 airborne al/ergens. Pol/eninlo.org offers a new 1001 on Patient's Hayfever Diary (PHD)
    corecore