1,696 research outputs found

    Magnetized Turbulent Dynamo in Protogalaxies

    Get PDF
    The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten time larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.Comment: accepted to ApJ, 35 pages, 3 figure

    Magnetic Field Amplification by Small-Scale Dynamo Action: Dependence on Turbulence Models and Reynolds and Prandtl Numbers

    Get PDF
    The small-scale dynamo is a process by which turbulent kinetic energy is converted into magnetic energy, and thus is expected to depend crucially on the nature of turbulence. In this work, we present a model for the small-scale dynamo that takes into account the slope of the turbulent velocity spectrum v(l) ~ l^theta, where l and v(l) are the size of a turbulent fluctuation and the typical velocity on that scale. The time evolution of the fluctuation component of the magnetic field, i.e., the small-scale field, is described by the Kazantsev equation. We solve this linear differential equation for its eigenvalues with the quantum-mechanical WKB-approximation. The validity of this method is estimated as a function of the magnetic Prandtl number Pm. We calculate the minimal magnetic Reynolds number for dynamo action, Rm_crit, using our model of the turbulent velocity correlation function. For Kolmogorov turbulence (theta=1/3), we find that the critical magnetic Reynolds number is approximately 110 and for Burgers turbulence (theta=1/2) approximately 2700. Furthermore, we derive that the growth rate of the small-scale magnetic field for a general type of turbulence is Gamma ~ Re^((1-theta)/(1+theta)) in the limit of infinite magnetic Prandtl numbers. For decreasing magnetic Prandtl number (down to Pm approximately larger than 10), the growth rate of the small-scale dynamo decreases. The details of this drop depend on the WKB-approximation, which becomes invalid for a magnetic Prandtl number of about unity.Comment: 13 pages, 8 figures; published in Phys. Rev. E 201

    Stochastic Flux-Freezing and Magnetic Dynamo

    Full text link
    We argue that magnetic flux-conservation in turbulent plasmas at high magnetic Reynolds numbers neither holds in the conventional sense nor is entirely broken, but instead is valid in a novel statistical sense associated to the "spontaneous stochasticity" of Lagrangian particle tra jectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. We discuss empirical evidence for spontaneous stochasticity, including our own new numerical results. We then use a Lagrangian path-integral approach to establish stochastic flux-freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux-conservation must remain stochastic at infinite magnetic Reynolds number. As an important application of these results we consider the kinematic, fluctuation dynamo in non-helical, incompressible turbulence at unit magnetic Prandtl number. We present results on the Lagrangian dynamo mechanisms by a stochastic particle method which demonstrate a strong similarity between the Pr = 1 and Pr = 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. We finally consider briefly some consequences for nonlinear MHD turbulence, dynamo and reconnectionComment: 29 pages, 10 figure

    Compressible hydromagnetic nonlinearities in the predecoupling plasma

    Full text link
    The adiabatic inhomogeneities of the scalar curvature lead to a compressible flow affecting the dynamics of the hydromagnetic nonlinearities. The influence of the plasma on the evolution of a putative magnetic field is explored with the aim of obtaining an effective description valid for sufficiently large scales. The bulk velocity of the plasma, computed in the framework of the LambdaCDM scenario, feeds back into the evolution of the magnetic power spectra leading to a (nonlocal) master equation valid in Fourier space and similar to the ones discussed in the context of wave turbulence. Conversely, in physical space, the magnetic power spectra obey a Schroedinger-like equation whose effective potential depends on the large-scale curvature perturbations. Explicit solutions are presented both in physical space and in Fourier space. It is argued that curvature inhomogeneities, compatible with the WMAP 7yr data, shift to lower wavenumbers the magnetic diffusivity scale.Comment: 29 page

    Importance of Resultant Action of the Mining Machine Actuator for Stresses in Impact Zone of a Separate Cutter

    Get PDF
    Two stress levels are considered in the general pattern of stress-strain state of the rock destroyed by the mining machine. The authors also ground the necessity of considering the interaction of all cutters of the actuating device when calculating the process of cutting with a separate cutter

    Features of martensitic transformation and fine structure of intermetallic compound Ni50Mn50

    Full text link
    Transmission and scanning electron microscopy and Xray and electron diffraction are used to investigate the martensitic transformation and martensitic phase structure of the Ni50Mn50 alloy. Its resistivity and coefficient of thermal expansion are measured over a wide temperature range. © 2013 Pleiades Publishing, Ltd

    Reconnection in a Weakly Stochastic Field

    Full text link
    We examine the effect of weak, small scale magnetic field structure on the rate of reconnection in a strongly magnetized plasma. This affects the rate of reconnection by reducing the transverse scale for reconnection flows, and by allowing many independent flux reconnection events to occur simultaneously. Allowing only for the first effect and using Goldreich and Sridhar's model of strong turbulence in a magnetized plasma with negligible intermittency, we find that the lower limit for the reconnection speed is the Alfven speed times the Lundquist number to the power (-3/16). The upper limit on the reconnection speed is typically a large fraction of Alfven speed. We argue that generic reconnection in turbulent plasmas will normally occur at close to this upper limit. The fraction of magnetic energy that goes directly into electron heating scales as Lundquist number to the power (-2/5) and the thickness of the current sheet scales as the Lundquist number to the power (-3/5). A significant fraction of the magnetic energy goes into high frequency Alfven waves. We claim that the qualitative sense of these conclusions, that reconnection is fast even though current sheets are narrow, is almost independent of the local physics of reconnection and the nature of the turbulent cascade. As the consequence of this the Galactic and Solar dynamos are generically fast, i.e. do not depend on the plasma resistivity.Comment: Extended version accepted to ApJ, 44pages, 2 figure

    Non-language factors and language evolution

    Get PDF
    This paper is devoted to the description of the functioning and development of the language system seen in correlation with the influence of non-language factor
    corecore