407 research outputs found

    Advanced undergraduate experiments in vacuum physics and mass spectrometry

    Get PDF
    A comprehensive high‐vacuum system has been set up and operated in an advanced undergraduate laboratory for students majoring in physics and microelectronics. The aim of the experiment is to provide the students with both practical experience and basic theoretical understanding of the production and measurement of low pressures. The students measure the pumping speed of a rotary forepump and of an oil diffusion pump, as a function of pressure, using procedures adopted by the AVS. A hot‐cathode ionization gauge and a thermocouple gauge are calibrated against a McLeod (absolute) manometer for several gases. The compositions of ambient air, of an isotopic mixture of neon, and of the residual gases in an oil‐diffusion‐pumped system are determined with the aid of a mass spectrometer. The influence of a liquid‐nitrogen‐cooled surface is assessed. Helium leak detection is demonstrated, and the response and sensitivity of the mass spectrometer as a leak detector are evaluated

    Electrical current distribution across a metal-insulator-metal structure during bistable switching

    Full text link
    Combining scanning electron microscopy (SEM) and electron-beam-induced current (EBIC) imaging with transport measurements, it is shown that the current flowing across a two-terminal oxide-based capacitor-like structure is preferentially confined in areas localized at defects. As the thin-film device switches between two different resistance states, the distribution and intensity of the current paths, appearing as bright spots, change. This implies that switching and memory effects are mainly determined by the conducting properties along such paths. A model based on the storage and release of charge carriers within the insulator seems adequate to explain the observed memory effect.Comment: 8 pages, 7 figures, submitted to J. Appl. Phy

    Decay-assisted collinear resonance ionization spectroscopy: Application to neutron-deficient francium

    Full text link
    This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes 202−206^{202-206}Fr performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly-sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes 202−206^{202-206}Fr, in addition to the identification of the low-lying states of 202,204^{202,204}Fr performed at the CRIS experiment.Comment: Accepted for publication with Physical Review

    Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry

    Full text link
    The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich 218m,219,229,231Fr^{218m,219,229,231}\text{Fr} isotopes were measured with the newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at ISOLDE, CERN, probing the 7s 2S1/27s~^{2}S_{1/2} to 8p 2P3/28p~^{2}P_{3/2} atomic transition. The ή⟹r2⟩A,221\delta\langle r^{2}\rangle^{A,221} values for 218m,219Fr^{218m,219}\text{Fr} and 229,231Fr^{229,231}\text{Fr} follow the observed increasing slope of the charge radii beyond N = 126N~=~126. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that 220Fr^{220}\text{Fr} has a weakly inverted odd-even staggering while 228Fr^{228}\text{Fr} has normal staggering. This suggests that both isotopes reside at the borders of a region of inverted staggering, which has been associated with reflection-asymmetric shapes. The g(219Fr)=+0.69(1)g(^{219}\text{Fr}) = +0.69(1) value supports a π1h9/2\pi 1h_{9/2} shell model configuration for the ground state. The g(229,231Fr)g(^{229,231}\text{Fr}) values support the tentative Iπ(229,231Fr)=(1/2+)I^{\pi}(^{229,231}\text{Fr}) = (1/2^{+}) spin, and point to a πs1/2−1\pi s_{1/2}^{-1} intruder ground state configuration.Comment: Accepted for publication with Physical Review

    Individual and Multi Vortex Pinning in Systems with Periodic Pinning Arrays

    Full text link
    We examine multi and individual vortex pinning in thin superconductors with periodic pinning arrays. For multi-vortex pinning we observe peaks in the critical current of equal magnitude at every matching field, while for individual vortex pinning we observe a sharp drop in the critical current after the first matching field in agreement with experiments. We examine the scaling of the critical current at commensurate and incommensurate fields for varied pinning strength and show that the depinning force at incommensurate fields decreases faster than at the commensurate fields.Comment: 4 figuure

    Nonlinear electrodynamics of p-wave superconductors

    Full text link
    We consider the Maxwell-London electrodynamics of three dimensional superconductors in p-wave pairing states with nodal points or lines in the energy gap. The current-velocity relation is then nonlinear in the applied field, cubic for point nodes and quadratic for lines. We obtain explicit angular and depth dependent expressions for measurable quantities such as the transverse magnetic moment, and associated torque. These dependences are different for point and line nodes and can be used to distinguish between different order parameters. We discuss the experimental feasibility of this method, and bring forth its advantages, as well as limitations that might be present.Comment: Fourteen pages RevTex plus four postscript figure

    Multiband model of high Tc superconductors

    Full text link
    We propose an extension to other high T_{c } compounds of a model introduced earlier for YBCO. In the ''self-doped'' compounds we assume that the doping part (namely the BiO, HgO, TlO planes in BSCCO, HBCCO, TBCCO respectively) is metallic, which leads to a multiband model. This assumption is supported by band structure calculations. Taking a repulsive pairing interaction between these doping bands and the CuO_{2} bands leads to opposite signs for the order parameter on these bands and to nodes whenever the Fermi surfaces of these bands cross. We show that in BSCCO the low temperature dependence of the penetration depth is reasonably accounted for. In this case the nodes are not located near the 45^{o} direction, which makes the experimental determination of the node locations an important test for our model. The situation in HBCCO and TBCCO is rather analogous to BSCCO. We consider the indications given by NMR and find that they rather favor a metallic character for the doping bands. Finally we discuss the cases of NCCO and LSCO which are not ''self-doped'' and where our model does not give nodes.Comment: 11 pages, revtex, 1 figure

    Scanning tunneling spectroscopy of high-temperature superconductors

    Full text link
    Tunneling spectroscopy played a central role in the experimental verification of the microscopic theory of superconductivity in the classical superconductors. Initial attempts to apply the same approach to high-temperature superconductors were hampered by various problems related to the complexity of these materials. The use of scanning tunneling microscopy/spectroscopy (STM/STS) on these compounds allowed to overcome the main difficulties. This success motivated a rapidly growing scientific community to apply this technique to high-temperature superconductors. This paper reviews the experimental highlights obtained over the last decade. We first recall the crucial efforts to gain control over the technique and to obtain reproducible results. We then discuss how the STM/STS technique has contributed to the study of some of the most unusual and remarkable properties of high-temperature superconductors: the unusual large gap values and the absence of scaling with the critical temperature; the pseudogap and its relation to superconductivity; the unprecedented small size of the vortex cores and its influence on vortex matter; the unexpected electronic properties of the vortex cores; the combination of atomic resolution and spectroscopy leading to the observation of periodic local density of states modulations in the superconducting and pseudogap states, and in the vortex cores.Comment: To appear in RMP; 65 pages, 62 figure

    Valence Fluctuations Revealed by Magnetic Field Scan: Comparison with Experiments in YbXCu_4 (X=In, Ag, Cd) and CeYIn_5 (Y=Ir, Rh)

    Full text link
    The mechanism of how critical end points of the first-order valence transitions (FOVT) are controlled by a magnetic field is discussed. We demonstrate that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field. This results explain the field dependence of the isostructural FOVT observed in Ce metal and YbInCu_4. Magnetic field scan can lead to reenter in a critical valence fluctuation region. Even in the intermediate-valence materials, the QCP is induced by applying a magnetic field, at which the magnetic susceptibility also diverges. The driving force of the field-induced QCP is shown to be a cooperative phenomenon of the Zeeman effect and the Kondo effect, which creates a distinct energy scale from the Kondo temperature. The key concept is that the closeness to the QCP of the FOVT is capital in understanding Ce- and Yb-based heavy fermions. It explains the peculiar magnetic and transport responses in CeYIn_5 (Y=Ir, Rh) and metamagnetic transition in YbXCu_4 for X=In as well as the sharp contrast between X=Ag and Cd.Comment: 14 pages, 9 figures, OPEN SELECT in J. Phys. Soc. Jp
    • 

    corecore