407 research outputs found
Advanced undergraduate experiments in vacuum physics and mass spectrometry
A comprehensive highâvacuum system has been set up and operated in an advanced undergraduate laboratory for students majoring in physics and microelectronics. The aim of the experiment is to provide the students with both practical experience and basic theoretical understanding of the production and measurement of low pressures. The students measure the pumping speed of a rotary forepump and of an oil diffusion pump, as a function of pressure, using procedures adopted by the AVS. A hotâcathode ionization gauge and a thermocouple gauge are calibrated against a McLeod (absolute) manometer for several gases. The compositions of ambient air, of an isotopic mixture of neon, and of the residual gases in an oilâdiffusionâpumped system are determined with the aid of a mass spectrometer. The influence of a liquidânitrogenâcooled surface is assessed. Helium leak detection is demonstrated, and the response and sensitivity of the mass spectrometer as a leak detector are evaluated
Electrical current distribution across a metal-insulator-metal structure during bistable switching
Combining scanning electron microscopy (SEM) and electron-beam-induced
current (EBIC) imaging with transport measurements, it is shown that the
current flowing across a two-terminal oxide-based capacitor-like structure is
preferentially confined in areas localized at defects. As the thin-film device
switches between two different resistance states, the distribution and
intensity of the current paths, appearing as bright spots, change. This implies
that switching and memory effects are mainly determined by the conducting
properties along such paths. A model based on the storage and release of charge
carriers within the insulator seems adequate to explain the observed memory
effect.Comment: 8 pages, 7 figures, submitted to J. Appl. Phy
Decay-assisted collinear resonance ionization spectroscopy: Application to neutron-deficient francium
This paper reports on the hyperfine-structure and radioactive-decay studies
of the neutron-deficient francium isotopes Fr performed with the
Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE
facility, CERN. The high resolution innate to collinear laser spectroscopy is
combined with the high efficiency of ion detection to provide a
highly-sensitive technique to probe the hyperfine structure of exotic isotopes.
The technique of decay-assisted laser spectroscopy is presented, whereby the
isomeric ion beam is deflected to a decay spectroscopy station for alpha-decay
tagging of the hyperfine components. Here, we present the first
hyperfine-structure measurements of the neutron-deficient francium isotopes
Fr, in addition to the identification of the low-lying states of
Fr performed at the CRIS experiment.Comment: Accepted for publication with Physical Review
Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry
The magnetic dipole moments and changes in mean-square charge radii of the
neutron-rich isotopes were measured with the
newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at
ISOLDE, CERN, probing the to atomic
transition. The values for
and follow the observed increasing
slope of the charge radii beyond . The charge radii odd-even
staggering in this neutron-rich region is discussed, showing that
has a weakly inverted odd-even staggering while
has normal staggering. This suggests that both isotopes
reside at the borders of a region of inverted staggering, which has been
associated with reflection-asymmetric shapes. The value supports a shell model configuration for the
ground state. The values support the tentative
spin, and point to a intruder ground state configuration.Comment: Accepted for publication with Physical Review
Individual and Multi Vortex Pinning in Systems with Periodic Pinning Arrays
We examine multi and individual vortex pinning in thin superconductors with
periodic pinning arrays. For multi-vortex pinning we observe peaks in the
critical current of equal magnitude at every matching field, while for
individual vortex pinning we observe a sharp drop in the critical current after
the first matching field in agreement with experiments. We examine the scaling
of the critical current at commensurate and incommensurate fields for varied
pinning strength and show that the depinning force at incommensurate fields
decreases faster than at the commensurate fields.Comment: 4 figuure
Nonlinear electrodynamics of p-wave superconductors
We consider the Maxwell-London electrodynamics of three dimensional
superconductors in p-wave pairing states with nodal points or lines in the
energy gap. The current-velocity relation is then nonlinear in the applied
field, cubic for point nodes and quadratic for lines. We obtain explicit
angular and depth dependent expressions for measurable quantities such as the
transverse magnetic moment, and associated torque. These dependences are
different for point and line nodes and can be used to distinguish between
different order parameters. We discuss the experimental feasibility of this
method, and bring forth its advantages, as well as limitations that might be
present.Comment: Fourteen pages RevTex plus four postscript figure
Multiband model of high Tc superconductors
We propose an extension to other high T_{c } compounds of a model introduced
earlier for YBCO. In the ''self-doped'' compounds we assume that the doping
part (namely the BiO, HgO, TlO planes in BSCCO, HBCCO, TBCCO respectively) is
metallic, which leads to a multiband model. This assumption is supported by
band structure calculations. Taking a repulsive pairing interaction between
these doping bands and the CuO_{2} bands leads to opposite signs for the order
parameter on these bands and to nodes whenever the Fermi surfaces of these
bands cross. We show that in BSCCO the low temperature dependence of the
penetration depth is reasonably accounted for. In this case the nodes are not
located near the 45^{o} direction, which makes the experimental determination
of the node locations an important test for our model. The situation in HBCCO
and TBCCO is rather analogous to BSCCO. We consider the indications given by
NMR and find that they rather favor a metallic character for the doping bands.
Finally we discuss the cases of NCCO and LSCO which are not ''self-doped'' and
where our model does not give nodes.Comment: 11 pages, revtex, 1 figure
Scanning tunneling spectroscopy of high-temperature superconductors
Tunneling spectroscopy played a central role in the experimental verification
of the microscopic theory of superconductivity in the classical
superconductors. Initial attempts to apply the same approach to
high-temperature superconductors were hampered by various problems related to
the complexity of these materials. The use of scanning tunneling
microscopy/spectroscopy (STM/STS) on these compounds allowed to overcome the
main difficulties. This success motivated a rapidly growing scientific
community to apply this technique to high-temperature superconductors. This
paper reviews the experimental highlights obtained over the last decade. We
first recall the crucial efforts to gain control over the technique and to
obtain reproducible results. We then discuss how the STM/STS technique has
contributed to the study of some of the most unusual and remarkable properties
of high-temperature superconductors: the unusual large gap values and the
absence of scaling with the critical temperature; the pseudogap and its
relation to superconductivity; the unprecedented small size of the vortex cores
and its influence on vortex matter; the unexpected electronic properties of the
vortex cores; the combination of atomic resolution and spectroscopy leading to
the observation of periodic local density of states modulations in the
superconducting and pseudogap states, and in the vortex cores.Comment: To appear in RMP; 65 pages, 62 figure
Valence Fluctuations Revealed by Magnetic Field Scan: Comparison with Experiments in YbXCu_4 (X=In, Ag, Cd) and CeYIn_5 (Y=Ir, Rh)
The mechanism of how critical end points of the first-order valence
transitions (FOVT) are controlled by a magnetic field is discussed. We
demonstrate that the critical temperature is suppressed to be a quantum
critical point (QCP) by a magnetic field. This results explain the field
dependence of the isostructural FOVT observed in Ce metal and YbInCu_4.
Magnetic field scan can lead to reenter in a critical valence fluctuation
region. Even in the intermediate-valence materials, the QCP is induced by
applying a magnetic field, at which the magnetic susceptibility also diverges.
The driving force of the field-induced QCP is shown to be a cooperative
phenomenon of the Zeeman effect and the Kondo effect, which creates a distinct
energy scale from the Kondo temperature. The key concept is that the closeness
to the QCP of the FOVT is capital in understanding Ce- and Yb-based heavy
fermions. It explains the peculiar magnetic and transport responses in CeYIn_5
(Y=Ir, Rh) and metamagnetic transition in YbXCu_4 for X=In as well as the sharp
contrast between X=Ag and Cd.Comment: 14 pages, 9 figures, OPEN SELECT in J. Phys. Soc. Jp
- âŠ