11,927 research outputs found

    Construction of equilibrium networks with an energy function

    Full text link
    We construct equilibrium networks by introducing an energy function depending on the degree of each node as well as the product of neighboring degrees. With this topological energy function, networks constitute a canonical ensemble, which follows the Boltzmann distribution for given temperature. It is observed that the system undergoes a topological phase transition from a random network to a star or a fully-connected network as the temperature is lowered. Both mean-field analysis and numerical simulations reveal strong first-order phase transitions at temperatures which decrease logarithmically with the system size. Quantitative discrepancies of the simulation results from the mean-field prediction are discussed in view of the strong first-order nature.Comment: To appear in J. Phys.

    Fracture of a viscous liquid

    Full text link
    When a viscous liquid hits a pool of liquid of same nature, the impact region is hollowed by the shock. Its bottom becomes extremely sharp if increasing the impact velocity, and we report that the curvature at that place increases exponentially with the flow velocity, in agreement with a theory by Jeong and Moffatt. Such a law defines a characteristic velocity for the collapse of the tip, which explains both the cusp-like shape of this region, and the instability of the cusp if increasing (slightly) the impact velocity. Then, a film of the upper phase is entrained inside the pool. We characterize the critical velocity of entrainment of this phase and compare our results with recent predictions by Eggers

    Lattice dynamics and correlated atomic motion from the atomic pair distribution function

    Full text link
    The mean-square relative displacements (MSRD) of atomic pair motions in crystals are studied as a function of pair distance and temperature using the atomic pair distribution function (PDF). The effects of the lattice vibrations on the PDF peak widths are modelled using both a multi-parameter Born von-Karman (BvK) force model and a single-parameter Debye model. These results are compared to experimentally determined PDFs. We find that the near-neighbor atomic motions are strongly correlated, and that the extent of this correlation depends both on the interatomic interactions and crystal structure. These results suggest that proper account of the lattice vibrational effects on the PDF peak width is important in extracting information on static disorder in a disordered system such as an alloy. Good agreement is obtained between the BvK model calculations of PDF peak widths and the experimentally determined peak widths. The Debye model successfully explains the average, though not detailed, natures of the MSRD of atomic pair motion with just one parameter. Also the temperature dependence of the Debye model largely agrees with the BvK model predictions. Therefore, the Debye model provides a simple description of the effects of lattice vibrations on the PDF peak widths.Comment: 9 pages, 11 figure

    Giant Magnetoelectric Effect in a Multiferroic Material with a High Ferroelectric Transition Temperature

    Full text link
    We present a unique example of giant magnetoelectric effect in a conventional multiferroic HoMnO3, where polarization is very large (~56 mC/m2) and the ferroelectric transition temperature is higher than the magnetic ordering temperature by an order. We attribute the uniqueness of the giant magnetoelectric effect to the ferroelectricity induced entirely by the off-center displacement of rare earth ions with large magnetic moments. This finding suggests a new avenue to design multiferroics with large polarization and higher ferroelectric transition temperature as well as large magnetoelectric effects

    Evolving networks with disadvantaged long-range connections

    Full text link
    We consider a growing network, whose growth algorithm is based on the preferential attachment typical for scale-free constructions, but where the long-range bonds are disadvantaged. Thus, the probability to get connected to a site at distance dd is proportional to dαd^{-\alpha}, where α\alpha is a tunable parameter of the model. We show that the properties of the networks grown with α<1\alpha <1 are close to those of the genuine scale-free construction, while for α>1\alpha >1 the structure of the network is vastly different. Thus, in this regime, the node degree distribution is no more a power law, and it is well-represented by a stretched exponential. On the other hand, the small-world property of the growing networks is preserved at all values of α\alpha .Comment: REVTeX, 6 pages, 5 figure

    Structural transitions in scale-free networks

    Get PDF
    Real growing networks like the WWW or personal connection based networks are characterized by a high degree of clustering, in addition to the small-world property and the absence of a characteristic scale. Appropriate modifications of the (Barabasi-Albert) preferential attachment network growth capture all these aspects. We present a scaling theory to describe the behavior of the generalized models and the mean field rate equation for the problem. This is solved for a specific case with the result C(k) ~ 1/k for the clustering of a node of degree k. Numerical results agree with such a mean-field exponent which also reproduces the clustering of many real networks.Comment: 4 pages, 3 figures, RevTex forma

    Correlations in Scale-Free Networks: Tomography and Percolation

    Full text link
    We discuss three related models of scale-free networks with the same degree distribution but different correlation properties. Starting from the Barabasi-Albert construction based on growth and preferential attachment we discuss two other networks emerging when randomizing it with respect to links or nodes. We point out that the Barabasi-Albert model displays dissortative behavior with respect to the nodes' degrees, while the node-randomized network shows assortative mixing. These kinds of correlations are visualized by discussig the shell structure of the networks around their arbitrary node. In spite of different correlation behavior, all three constructions exhibit similar percolation properties.Comment: 6 pages, 2 figures; added reference

    Social media usage in academic research

    Get PDF
    Recently researchers have used “conversation prism” and “social media prisma”, to consolidate social medias with respect to their use. Although both identified 25 types, having average five examples each, they did not identify contribution of each type in academic research. Moreover some of mentioned social services had been suspended or changed. In this paper we attempt to access each social media mentioned in conversation prism in order to first, identify services that are operational to date, services which have suspended and those which have changed during course of time. Second, we compare number of publications associated with each social media, in order to identify which social media has contributed most to academic research. Third, we attempt to find correlation between number of publications and development tools provided by respective social applications. Fourth, social medias are ranked with respect to number of times other social medias share content with respective social application. It was found that out of 168 social applications, 10% changed their service objective while 13% were suspended. Among all social application, AMAZON had highest i.e. 147,000 number of citations on Google scholar whereas 90.7% of total citations were contributed by top 30 social medias. For developers, 22 out of top 30 social medias provided developer options in form of either application programming interface (API) or software development kits (SDK) and Facebook was found to be most cross referred social media based on content sharing. Finally conclusion and future work of study is presented

    Self-similarity of complex networks

    Full text link
    Complex networks have been studied extensively due to their relevance to many real systems as diverse as the World-Wide-Web (WWW), the Internet, energy landscapes, biological and social networks \cite{ab-review,mendes,vespignani,newman,amaral}. A large number of real networks are called ``scale-free'' because they show a power-law distribution of the number of links per node \cite{ab-review,barabasi1999,faloutsos}. However, it is widely believed that complex networks are not {\it length-scale} invariant or self-similar. This conclusion originates from the ``small-world'' property of these networks, which implies that the number of nodes increases exponentially with the ``diameter'' of the network \cite{erdos,bollobas,milgram,watts}, rather than the power-law relation expected for a self-similar structure. Nevertheless, here we present a novel approach to the analysis of such networks, revealing that their structure is indeed self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a finite self-similar exponent. These fundamental properties, which are shown for the WWW, social, cellular and protein-protein interaction networks, help to understand the emergence of the scale-free property in complex networks. They suggest a common self-organization dynamics of diverse networks at different scales into a critical state and in turn bring together previously unrelated fields: the statistical physics of complex networks with renormalization group, fractals and critical phenomena.Comment: 28 pages, 12 figures, more informations at http://www.jamlab.or
    corecore