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Structural transitions in scale-free networks
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Real growing networks such as the World Wide Web or personal connection based networks are character-
ized by a high degree of clustering, in addition to the small-world property and the absence of a characteristic
scale. Appropriate modifications of ti{Barabai-Albert) preferential attachment network growth capture all
these aspects. We present a scaling theory to describe the behavior of the generalized models and the mean-
field rate equation for clustering. This is solved for a specific case with the @gkiit- 1/k for the clustering
of a node of degrek. This mean-field exponent agrees with simulations, and reproduces the clustering of many
real networks.
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[. INTRODUCTION the number of links between the neighbors of the nodekand
is its degree. In real networks, as a combination of the prop-
In diverse fields of scientific interest underlying network erties(i) and (iii), the clustering coefficient as a function of
structures can be recognized, which provide a unifying conthe degree of the nodes often follows a power l&{k)
cept of investigation[1]. Examples range from biology o«k™“. The value ofa is in many networks close to 1.
(metabolic network$2], protein nets in the cell3]) through In 1998, Watts and Strogatz created an interesting family
sociology(movie actor relationship&], co-author networks of models: introducing a rather low proportion of random
[5], sexual net$6]) to informatics(Internet[7], World Wide  links between arbitrarily selected pairs of nodes in a regular
Web (WWW) [8]). In all these examples it is easy to identify lattice has the consequence that propdiity gets fulfilled
the constituents of the problem with the nodes of a graph andhile clustering does not decrease considerably, assuning
their relationships with directed or undirected links. During[12,13. However, the distribution of the degrees of nodes
the past few years a great deal of information has accumwshows a characteristic peak instead of the required power
lated about such structures. Three apparent features seemlawv. Barabai and Albert(BA) realized that in the examples
characterize them rather robustly) a high degree of clus- mentioned at the beginning an important aspect is that the
tering, i.e., if nodeA andB are linked to nodeC then there  networks are created by growth. BA proposed preferential
is a good chance th&tandB are also linked(ii) the “small-  attachment{PA) as a growth rule: the new nodes are linked
world” property, i.e., the expected number of links needed toto the old ones with a probability proportional to their actual
reach from one arbitrarily selected node to another one isegree[4]. The structures obtained this way are scale-free
low; (iii) the absence of a characteristic scale, which ofterand have the small-world property. In spite of capturing im-
appears so that the distributidf(k) of the degreek of  portant aspects of growing networks, the clustering tends
nodes follows a power law. rapidly to a constant as a function of the degkesnd van-
Clustering in real networks is an essential and an almosshes in the thermodynamic limit.
ubiquitous featurg9]. It measures the deviation from a struc-  Recently, attempts have been undertaken to modify the PA
ture with vanishing correlations, and it has been used to denetwork growth models so as to increase clustering. In these
scribe the tendency of networks to form cliques or tightlymodels a mechanism, controlled by a new parameter, is in-
connected neighborhoods. As an organizing principle, this isroduced to take into account the effect that “friends of
most obvious in social networks, where connections are usuffiends get friends.” Indeed, it has been possible to create
ally created by personal acquaintances, such as in the sciemodels which have all the three propertigs-(iii ) [9,14,13.
tific collaboration network. Considerable clustering has also The aim of this paper is to present a general framework,
been found in networks of more diverse nature. Prime exapplicable to the transition from a PA graph with zero clus-
amples are the WWW, metabolic and protein interaction nettering to still scale-free graphs with(k)ok™“. For this pur-
works, the actor network, the power grid of the United pose we consider a corresponding mean-fidiF) and a
States, the semantic web of english woféls and the back- rate-equation theory. We propose these as a combined ap-
bone of the Internet on both the autonomous system and th@oach to study structural correlatiofisere clustering, i.e.,
router level[10,11. The number of entries in this list is on triangle formation or three-point correlations, but loops in
the rise as new disciplines are being taken under considegeneral could be discusgeés an example we will take the
ation and raw data are made available. A comprehensive eXxolme-Kim model[14] (a modified BA ong for which the
amination of a variety of examples of clustering can beMF rate equations can be solved, leadingate 1. This is
found in Ref.[9]. For a particular node, thelustering coef- also shown to describe the simulations very well, and the
ficientis defined axC=n/[k(k—1)/2][0;1], wheren is  mechanism involved, though very simple, suggests why
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many real networks have such anas well. At the end, we

discuss further possibilities. 1 1 1
\PA \TF \PA
Il. GENERAL SCALING THEORY —, —, —,
We start from the simplest undirected BA model: a new F A P
nodej with mlinks is added to the system atiscreté time (@) (b) (c)

t. A link from nodej to nodei is drawn with probability
ki /Zk;. It is known that the average clustering at nads
independent of the degrée [15]:

FIG. 1. Three different options to connect to nod&ith m
=2. In (a), a PA step is performed first linking toand then a TF
step creates a link between neighbors. dh (b), the same happens,
in a different order(c) shows how two PA steps may contribute to

m—1 (In N)2 n;. Bold edges increase, .
C(i|ki:k)=T N (1)

eterp. This can be “annealed” or “quenched,” depending on
i.e., it is inversely proportional to the numbak of nodes whether the parameter describes stochastic ridesin the
(with a logarithmic correction[16]. For the generalization of example belowor a fixed property of each nodee.g.,R
the BA model with enhanced clustering, we have a parametefan simply follow from the preferential attachment ruleis
p representing an imposed tendency to form triangles on thehe set of neighbors of nodeand the sum accounts for the
graph. Itis chosen such that@t 0 the original BAmodelis  probability that a new node linked talso links to one of the

recovered. neighbors ofi. This increases; and enhances clustering. In

We propose as a scaling ansatz to describe the clusteringqer to make Eq(4) more concrete, we discuss the triad
coefficientC as a function of the degrele the number of 5 mation mode[14] as an example.

nodesN, and the parameter.

IIl. THE TRIAD FORMATION MODEL
)

k*(N,p))' The complications in solving a rate equation like E4).
arise from the correlations that are embedded between the
wheref(x) is a scaling function witf(x) —const forx>1  degree of nodé and the properties of its neighborhood. For
and f(x) —x~“ for x<1 and the behavior in Eq1) is al-  the triad formation model, the rules consist of a BA model
ready taken into account by fixing the exponent of the prefextended by a triad formation step. Initially, the network con-
actor off. The characteristic degrde is a monotonically tainsm, vertices and no edges, and in every time step a new
increasing function oN for fixed p a_nd it. should decrease as yertex is added withm undirected edges. The edges are
P goes to zero. A natural assumption is then then one by one subsequently linkednadifferent nodes in
the network. One performs a preferential attachment step for
k* (N,p)~N7p°. (3) thefirst edge as defined in the BA model. With probabitity
the second and further edges are joined to a randomly chosen
As for smallk the clusteringC in Eqg. (2) should go likek™ neighbor of the node selected in the previous PA step. Alter-
and become independent Nf we havey=1/a. The expo- natively, with probability I-p, a PA step is performed
nent Sa describes, how foN—o the clusteringC ap-  again.
proaches its limiting value zero gs goes to zero. If we In the limit when p approaches zero, one recovers the
accept that in most cases=1, there is one exponent to be original BA model, and by setting to a value between 0 and
determined, says. We now clarify the origin ofe=1 and 1 the average clustering can be adjusted continuously and
6=1 for the model employed. grows monotonically with an increasing The microscopic
For this purpose we write down the rate equations for thenechanisms that increase are illustrated in Fig. 1 and are
ClUStering in a general form. We thus need to consider th%e fo”owing: (a) the new node connects to nod@& a PA
rate of change averaged over many realizations, step, which is potentially followed by several TF stefl;
the new node connects to one of the neighborsinfa PA
an: step and thenconversely gets linked to the new node in one
_I:R(ki .p) 2 R(K,,p), (4) of the subsequent TF step&;) the new node connects to
ot neQ nodei in a PA step and a neighbor ofis also selected for

) ) connection to the new node in another PA step.
wheren; is the average number of connected neighbors of

sitei, andC;=n; /[ki(k;—1)/2]. HereR s the rate at which

i gets new linkgor even loses them, if applied to processes
with reattachment or deletion of linkswWe allow, in analogy
with the scaling ansatz presented above, the rate to depend Using the above folR(k;,p), the rate equation fon;
on both the degrees of the node in question and the parameads

C(k,N,p)=N—1f(

IV. SOLUTION OF THE RATE EQUATIONS
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an, ki k. 1 ki where we made use of the fact thigk; =k; /(2t) [14]. From

= Mpas =M+ Mpp > 5 M+ Mpas— this, it also follows thatk(t)=m(t/t)¥2 wheret, is the
ot 2mt neq 2mt K, 2mt . . . . . .
time at which node was introduced4]. Thus integratindc)
K gives
n
X(Mpa=1) 2 5. (5)

N ki kn
L mPAZ_mt(mPA_ 1)ﬂ§9 thdt

The first term in the sum gives the increase nin by
mechanisn(a). mp4 is the number of PA steps attempted for
each new nodérecall that per time unit one new node is
added. k;/(2mt) is the preferential attachment probability
to nodei; myg is the expected number of triad formation

Moa(Moa—1) (N k? m
M—PA)f Km
4m? 1 t2 2

steps that take place on the average after a single PA step. _ MMpa(Mpa—1) (Int)?N
Given this, we have thamps+mpymre=m. Again, it B 8t; 2 ]
should be noted tham; and all quantities are expectation
values, and can only be compared to simulations if an en- 2
’ . Mpa(Mpa—1) (INN
semble average is performed. _ Mpalmpa—1) (INN) K2(N), ®)

The second term describes mechanidm in this term, 16m N
the sum goes over all neighbdisof i, and their degrees are
denoted by, . 1/, comes from the fact that the neighboring With ki(t) being substituted where needed. Combining this
node where a TF step links is chosen uniformly from theWith Eq. (7) yields
neighbors. We exclude here secondary triangle formation
that takes place if two TF steps from the new node form a )
triangle withi and one of s neighbors, which becomes more _ N 2Mp M K+ Mpa(Mpa—1) (INN) K. (9)

; : i

relevant for largep’s. The term for(b) gives the same ex- 16m N
pression aga) after simplification.

The last term belongs t¢c) and it is the only one that The clustering coefficient for nodes with degrieebe-
would remain if we considered the simple BA model. It is comes
the product of the probabilities of linking to nodeand to
one of the neighbors df respectively, using only PA steps.

The term contains the sum of the degrees of neighboring n 4mre m—1 (InN)?

nodes; this i; times the average degree of the neighbors. It Ck)= k=172~ k T8 N+ (10
has been shown that for uncorrelated random BA networks

[17]

after neglectingn; o and approximatingne, by m, which is
reasonable when the triad formation probability is small. It is
not surprising that the constant offset in the expressio@ of

S Kk is for p— 0 exactly the constant clustering coefficient of pure
nco (k) m BA graphs. The first term, more importantly, can be attrib-
(kn)= K, =Tlnt= E'”t- (6)  uted to the triad formation induced clustering, and shows the

1/k behavior typical of many real networks and other models
[9,15,18. C(k) is composed of a power law and a constant,
In this model the numerical result follows the same Scalin%o perfect power_|aw behavior follows On|y when the former
not only forp<1 but forp general. one dominates. In the opposite case an effective exponent
Finally, we approximaten; at the end of the network |l be less than 1. Furthermore, sincg, has been ne-
grOWth by going over from discrete to continuous VariableSg|ected, Eq(]_O) and the inverse proporvtiona"ty app|y to
and integrating both sides in E@) The integl’al for terma) nodes W|thk| |arge enough, 0n|y.
or (b) is simply For further progressn;g, the expected number of links
created in the several possible TF steps after a PA step for a
particular node, needs to be approximated. Takel edges
N k; MpaMye (NAk; to be available for successive TF stéfbgs is an upper limit
f Mp Az Mredt=— L ardt and assume that nodeis not saturated yet as far as the
connections to the neighbors are concerned. This givgs
=3M"27p%(1—p) +(m—1)p™ ‘~p for p small.
[ki(N)—m] The fact that the local clustering coefficient contains a

1

_ MpaMyr
m

constant term means that there is a crossover at a céftain
At this point, a power law turns over to a constant clustering
_ MpaAMTF K (N) @) coefficient.k* can be estimated by taking the two terms in
m ne Eq. (10) to be equal:
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FIG. 3. Clustering coefficient for networks of Modes and
FIG. 2. Clustering coefficient as a function of the node degre({n:f‘g;othe mid formatc;on pmbab'“.ty 'I’;:?]'Z’ 0.4, 0'(?’ 0.8,danqh
for m=5 and different sizes (£0for O, 25 119 for+, 63096 for 1+ for©. +. *, L, and &, respectively. The curves descend wit

* 158489 ford, and 16 for A). The triad formation probability an exponent of-1, invariably, thus ensuring a _good qualitative
is uniformly p=0.01. The bold line is the prediction given for the match to Eq(10). The data have been logarithmically binned and

largest systemC(k) ~0.0&1+9.5x 1075, The crossover degree the lack of fluctuations indicates a uniform behavior even at large
from Eq.(11) is k* ~400. The inset shows the data collapse of thedegrees.
power-law part ofC(k).
preferential attachment and our study demonstrates that this

32 situation remains unaltered even when considering a mecha-
——PpN. (11)  nism that enhances clustering. The agreement between the
m(In N) 1k dependence wittw=1 obtained in Eq(10) and that
Thus we can conclude that the exponents of &jj.are y found in_ real networks_indicates that_the same “mean-fielgl”
—1/a=1 ands=1 for the triad formation model, and from mechanisms of clustering are operative. For PA growth with
above,a=1. enhanced clustering the simplest interpretation is that for
each new link a nodegains from a new node introduced to
the network, its neighbor€'friends” ) have also a constant
probability to be linked to the same new one. This is in fact

Simulations of the model consistently confirm the analyti-exactly the Holme-Kim model, and just expresses the fact
cal results obtained from the rate equation. In Fig. 2 netthat asC;~n;/k?, to geta=1 one needs;~Kk; .
works of different sizes are shown to undergo such a transi-
tion to constant clustering by tuningso thatk* is smaller
than the maximum degree in the networks. The peaks that V1. SUMMARY
are visible in the inset at large degrees, especially when the
systems are small, come from the initial network core that is Itis interesting to ask how robust the mean-field exponent
chosen to be a fully connected graph of size- 1. This has is and what are the limits of the above approach, especially
a large clustering coefficient for each node that remaingn the light of the recently discovered networks wii¥ 1
highly connected even after a long time. The inset of Fig. 19]. The rate equations allow to discuss the ways how ex-
has been obtained by subtracting the expected value of thgonents like such can emerge. Equatidhimplies that the
k-independent term of Eq10) from the data, thus revealing clustering is crucially dependent on the properties of the
how the 1k behavior universally emerges. nodes in the neighborhoof),. If, say, correlations from “as-

A similar phenomenon to the transition described abovesortative” or “disassortative” mixing arise betwedq and
can be observed in the case of the actor network of the Inthe average degregk,) (ne Q) [20], this may either en-
ternet Movie Databasg9], where the tail of a decreasing hance @<1) or inhibit («>1) clustering from the mean-
power law becomes constant, although large fluctuationfield result. On the level of models, one can envision chang-
naturally affect this part of the statistics. Figure 3 showsing the k and thep dependence of the rates. The second
networks well below the transition and thus almost only thepossibility is fluctuation effects that limit the validity of the

* =

V. SIMULATIONS

power-law part is conceivable. rate-equation theory. It would seem interesting to explore
It is not unusual in the physics of scale-free networks thaboth these issues.
mean-field approaches work w¢ll]. This fact is related to In conclusion, we have formulated a scaling assumption

the strongly hierarchical nature of the networks grown byand a mean-field theory of the clustering of scale-free net-
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works. A specific example, the triad formation modi&4]  structural dynamics allows for deleting edges, as well
has been solved and comparisons to the simulations indicaf@1,22.

both good agreement and yield the MF value of the exponent
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