56 research outputs found

    Ozone observations and a model of marine boundary layer photochemistry during SAGA 3

    Get PDF
    A major purpose of the third joint Soviet‐American Gases and Aerosols (SAGA 3) oceanographic cruise was to examine remote tropical marine O3 and photochemical cycles in detail. On leg 1, which took place between Hilo, Hawaii, and Pago‐Pago, American Samoa, in February and March 1990, shipboard measurements were made of O3, CO, CH4, nonmethane hydrocarbons (NMHC), NO, dimethyl sulfide (DMS), H2S, H2O2, organic peroxides, and total column O3. Postcruise analysis was performed for alkyl nitrates and a second set of nonmethane hydrocarbons. A latitudinal gradient in O3 was observed on SAGA 3, with O3 north of the intertropical convergence zone (ITCZ) at 15–20 parts per billion by volume (ppbv) and less than 12 ppbv south of the ITCZ but never ≤3 ppbv as observed on some previous equatorial Pacific cruises (Piotrowicz et al., 1986; Johnson et al., 1990). Total column O3 (230–250 Dobson units (DU)) measured from the Akademik Korolev was within 8% of the corresponding total ozone mapping spectrometer (TOMS) satellite observations and confirmed the equatorial Pacific as a low O3 region. In terms of number of constituents measured, SAGA 3 may be the most photochemically complete at‐sea experiment to date. A one‐dimensional photochemical model gives a self‐consistent picture of O3‐NO‐CO‐hydrocarbon interactions taking place during SAGA 3. At typical equatorial conditions, mean O3 is 10 ppbv with a 10–15% diurnal variation and maximum near sunrise. Measurements of O3, CO, CH4, NMHC, and H2O constrain model‐calculated OH to 9 × 105 cm−3 for 10 ppbv O3 at the equator. For DMS (300–400 parts per trillion by volume (pptv)) this OH abundance requires a sea‐to‐air flux of 6–8 × 109 cm−2 s−1, which is within the uncertainty range of the flux deduced from SAGA 3 measurements of DMS in seawater (Bates et al., this issue). The concentrations of alkyl nitrates on SAGA 3 (5–15 pptv total alkyl nitrates) were up to 6 times higher than expected from currently accepted kinetics, suggesting a largely continental source for these species. However, maxima in isopropyl nitrate and bromoform near the equator (Atlas et al., this issue) as well as for nitric oxide (Torres and Thompson, this issue) may signify photochemical and biological sources of these species

    Unified (q;α,β,γ;ν)(q;\alpha,\beta,\gamma;\nu)-deformation of one-parametric q-deformed oscillator algebras

    Full text link
    We define a generalized (q;α,β,γ;ν)(q;\alpha,\beta,\gamma;\nu)-deformed oscillator algebra and study the number of its characteristics. We describe the structure function of deformation, analyze the classification of irreducible representations and discuss the asymptotic spectrum behaviour of the Hamiltonian. For a special choice of the deformation parameters we construct the deformed oscillator with discrete spectrum of its "quantized coordinate" operator. We establish its connection with the (generalized) discrete Hermite I polynomials

    Plasma Focus as a lens for intense ion beam focusing

    No full text
    Experimental investigations were performed to evaluate the focusing properties of the plasma focus for high-energy intense ion beams manipulating. Magnetic probes and optical spectroscopy were used for temporal and spatial plasma geometry investigations. Ion beam portrait was determined at the luminescence screen. In the experiments performed, the focusing coefficient was obtained as the ten times beam compression at the 30 cm length. By variations of the gas volume input, gun voltage, time delay, magnetic field value etc. the dependence of focused ion beam diameter upon various parameters of the plasma focus lens has been investigated. It was revealed that the main focusing effect was caused by the azimuthal magnetic field of the currents carried by the plasma

    Comparative Analysis of the Active Sites of Orthologous Endolysins of the \u3cem\u3eEscherichia\u3c/em\u3e Lytic Bacteriophages T5, RB43, and RB49

    No full text
    The methods of solution NMR, circular dichroism (CD), and differential scanning calorimetry (DSC) were used to study two zinc-containing L-alanyl-D-glutamate peptidases - endolysins of the pseudo T-even myoviruses RB43 and RB49 (EndoRB43 and EndoRB49, respectively), which are orthologous to the EndoT5, which is a zinc-containing L-alanyl-D-glutamate peptidase of the T5 siphovirus. The spatial conservation of the Zn2+-binding sites for the enzymes EndoT5, EndoRB43, and EndoRB49 was established, and the key role of Zn2+ ions in the stabilization of the spatial structures of these three peptidases was confirmed. We are showing here that the binding of the Zn2+ ion in the active center of EndoRB49 peptidase causes conformational rearrangements similar to those observed in the EndoT5 peptidase upon binding of Zn2+ and Ca2+ ions and lead to the formation of a catalytically active form of the enzyme. Therefore, the binding of the Zn2+ ion to the active site of EndoRB49 peptidase is a necessary and sufficient condition for functioning of this protein
    corecore