548 research outputs found

    Topological Wilson-loop area law manifested using a superposition of loops

    Full text link
    We introduce a new topological effect involving interference of two meson loops, manifesting a path-independent topological area dependence. The effect also draws a connection between quark confinement, Wilson-loops and topological interference effects. Although this is only a gedanken experiment in the context of particle physics, such an experiment may be realized and used as a tool to test confinement effects and phase transitions in quantum simulation of dynamic gauge theories.Comment: Superceding arXiv:1206.2021v1 [quant-ph

    Remote operations and interactions for systems of arbitrary dimensional Hilbert space: a state-operator approach

    Get PDF
    We present a systematic simple method for constructing deterministic remote operations on single and multiple systems of arbitrary discrete dimensionality. These operations include remote rotations, remote interactions and measurements. The resources needed for an operation on a two-level system are one ebit and a bidirectional communication of two cbits, and for an n-level system, a pair of entangled n-level particles and two classical ``nits''. In the latter case, there are n1n-1 possible distinct operations per one n-level entangled pair. Similar results apply for generating interaction between a pair of remote systems and for remote measurements. We further consider remote operations on NN spatially distributed systems, and show that the number of possible distinct operations increases here exponentially, with the available number of entangled pairs that are initial distributed between the systems. Our results follow from the properties of a hybrid state-operator object (``stator''), which describes quantum correlations between states and operations.Comment: 18 pages, 3 figures, typo correction

    Model for the low-temperature magnetic phases observed in doped YBa_2Cu_3O_{6+x}

    Full text link
    A classical statistical model for the antiferromagnetic (AFM) ordering of the Cu-spins in the CuO_2 planes of reduced YBa_2Cu_3O_{6+x} type materials is presented. The magnetic phases considered are the experimentally observed high-temperature AFI phase with ordering vector Q_I=(1/2,1/2,0), and the low-temperature phases: AFII with Q_II=(1/2,1/2,1/2) and intermediate TA (Turn Angle) phases TAI, TAII and TAIII with components of both ordering vectors. It is shown that the AFII and TA phases result from an effective ferromagnetic (FM) type coupling mediated by free spins in the CuO_x basal plane. Good agreement with experimental data is obtained for realistic model parameters.Comment: 11 pages, 2 Postscript figures, Submitted to Phys.Rev.Let

    Superconductivity-Induced Anomalies in the Spin Excitation Spectra of Underdoped YBa_2 Cu_3 O_{6+x}

    Full text link
    Polarized and unpolarized neutron scattering has been used to determine the effect of superconductivity on the magnetic excitation spectra of YBa_2 Cu_3 O_{6.5} (T_c = 52K) and YBa_2 Cu_3 O_{6.7} (T_c = 67K). Pronounced enhancements of the spectral weight centered around 25 meV and 33 meV, respectively, are observed below T_c in both crystals, compensated predominantly by a loss of spectral weight at higher energies. The data provide important clues to the origin of the 40 meV magnetic resonance peak in YBa_2 Cu_3 O_7.Comment: LaTex, 4 pages, 4 ps figures. to appear in Phys. Rev. Let

    Hawking Radiation from AdS Black Holes

    Get PDF
    We investigate Hawking radiation from black holes in (d+1)-dimensional anti-de Sitter space. We focus on s-waves, make use of the geometrical optics approximation, and follow three approaches to analyze the radiation. First, we compute a Bogoliubov transformation between Kruskal and asymptotic coordinates and compare the different vacua. Second, following a method due to Kraus, Parikh, and Wilczek, we view Hawking radiation as a tunneling process across the horizon and compute the tunneling probablility. This approach uses an anti-de Sitter version of a metric originally introduced by Painleve for Schwarzschild black holes. From the tunneling probability one also finds a leading correction to the semi-classical emission rate arising from the backreaction to the background geometry. Finally, we consider a spherically symmetric collapse geometry and the Bogoliubov transformation between the initial vacuum state and the vacuum of an asymptotic observer.Comment: 13 pages, latex2e, v2: some clarifications and references adde

    Neutron Scattering and the B_{1g} Phonon in the Cuprates

    Full text link
    The momentum dependent lineshape of the out-of-phase oxygen vibration as measured in recent neutron scattering measurements is investigated. Starting from a microscopic coupling of the phonon vibration to a local crystal field, the phonon lineshift and broadening is calculated as a function of transfered momentum in the superconducting state of YBa2_{2}Cu3_{3}O7_{7}. It is shown that the anisotropy of the density of states, superconducting energy gap, and the electron-phonon coupling are all crucial in order to explain these experiments.Comment: new figures and discussio

    High energy spin excitations in YBa_2 Cu_3 O_{6.5}

    Full text link
    Inelastic neutron scattering has been used to obtain a comprehensive description of the absolute dynamical spin susceptibility χ(q,ω)\chi'' (q,\omega) of the underdoped superconducting cuprate YBa_2 Cu_3 O_{6.5} (Tc=52KT_c = 52 K) over a wide range of energies and temperatures (2meVω120meV2 meV \leq \hbar \omega \leq 120 meV and 5KT200K5K \leq T \leq 200K). Spin excitations of two different symmetries (even and odd under exchange of two adjacent CuO_2 layers) are observed which, surprisingly, are characterized by different temperature dependences. The excitations show dispersive behavior at high energies.Comment: 15 pages, 5 figure

    Emergent Horizons in the Laboratory

    Full text link
    The concept of a horizon known from general relativity describes the loss of causal connection and can be applied to non-gravitational scenarios such as out-of-equilibrium condensed-matter systems in the laboratory. This analogy facilitates the identification and theoretical study (e.g., regarding the trans-Planckian problem) and possibly the experimental verification of "exotic" effects known from gravity and cosmology, such as Hawking radiation. Furthermore, it yields a unified description and better understanding of non-equilibrium phenomena in condensed matter systems and their universal features. By means of several examples including general fluid flows, expanding Bose-Einstein condensates, and dynamical quantum phase transitions, the concepts of event, particle, and apparent horizons will be discussed together with the resulting quantum effects.Comment: 7 pages, 4 figure

    Effect of Nonmagnetic Impurities on the Magnetic Resonance Peak in YBa2Cu3O7

    Full text link
    The magnetic excitation spectrum of a YBa_2 Cu_3 O_7 crystal containing 0.5% of nonmagnetic (Zn) impurities has been determined by inelastic neutron scattering. Whereas in the pure system a sharp resonance peak at E ~ 40 meV is observed exclusively below the superconducting transition temperature T_c, the magnetic response in the Zn-substituted system is broadened significantly and vanishes at a temperature much higher than T_c. The energy-integrated spectral weight observed near q = (pi,pi) increases with Zn substitution, and only about half of the spectral weight is removed at T_c
    corecore