1,037 research outputs found
Lifetime of the Bose Gas with Resonant Interactions
We study the lifetime of a Bose gas at and around unitarity using a Feshbach
resonance in lithium~7. At unitarity, we measure the temperature dependence of
the three-body decay coefficient . Our data follow a law with \lambda_{3} = 2.5(3)_{stat}_(6)_{sys} 10^{-20}
(\mu K)^2 cm^6 s^{-1} and are in good agreement with our analytical result
based on the zero-range theory. Varying the scattering length at fixed
temperature, we investigate the crossover between the finite-temperature
unitary region and the previously studied regime where is smaller than
the thermal wavelength. We find that is continuous across resonance,
and over the whole range our data quantitatively agree with our
calculation
Dobinski-type relations: Some properties and physical applications
We introduce a generalization of the Dobinski relation through which we
define a family of Bell-type numbers and polynomials. For all these sequences
we find the weight function of the moment problem and give their generating
functions. We provide a physical motivation of this extension in the context of
the boson normal ordering problem and its relation to an extension of the Kerr
Hamiltonian.Comment: 7 pages, 1 figur
Dobiński relations and ordering of boson operators
We introduce a generalization of the Dobiński relation, through which we define a family of Bell-type numbers and polynomials. Such generalized Dobiński relations are coherent state matrix elements of expressions involving boson ladder operators. This may be used in order to obtain normally ordered forms of polynomials in creation and annihilation operators, both if the latter satisfy canonical and deformed commutation relations
The equation of state of ultracold Bose and Fermi gases: a few examples
We describe a powerful method for determining the equation of state of an
ultracold gas from in situ images. The method provides a measurement of the
local pressure of an harmonically trapped gas and we give several applications
to Bose and Fermi gases. We obtain the grand-canonical equation of state of a
spin-balanced Fermi gas with resonant interactions as a function of
temperature. We compare our equation of state with an equation of state
measured by the Tokyo group, that reveals a significant difference in the
high-temperature regime. The normal phase, at low temperature, is well
described by a Landau Fermi liquid model, and we observe a clear thermodynamic
signature of the superfluid transition. In a second part we apply the same
procedure to Bose gases. From a single image of a quasi ideal Bose gas we
determine the equation of state from the classical to the condensed regime.
Finally the method is applied to a Bose gas in a 3D optical lattice in the Mott
insulator regime. Our equation of state directly reveals the Mott insulator
behavior and is suited to investigate finite-temperature effects.Comment: 14 pages, 6 figure
- …
