9,916 research outputs found
The relation between gas density and velocity power spectra in galaxy clusters: high-resolution hydrodynamic simulations and the role of conduction
Exploring the ICM power spectrum can help us to probe the physics of galaxy
clusters. Using high-resolution 3D plasma simulations, we study the statistics
of the velocity field and its relation with the thermodynamic perturbations.
The normalization of the ICM spectrum (density, entropy, or pressure) is
linearly tied to the level of large-scale motions, which excite both gravity
and sound waves due to stratification. For low 3D Mach number M~0.25, gravity
waves mainly drive entropy perturbations, traced by preferentially tangential
turbulence. For M>0.5, sound waves start to significantly contribute, passing
the leading role to compressive pressure fluctuations, associated with
isotropic (or slightly radial) turbulence. Density and temperature fluctuations
are then characterized by the dominant process: isobaric (low M), adiabatic
(high M), or isothermal (strong conduction). Most clusters reside in the
intermediate regime, showing a mixture of gravity and sound waves, hence
drifting towards isotropic velocities. Remarkably, regardless of the regime,
the variance of density perturbations is comparable to the 1D Mach number. This
linear relation allows to easily convert between gas motions and ICM
perturbations, which can be exploited by Chandra, XMM data and by the
forthcoming Astro-H. At intermediate and small scales (10-100 kpc), the
turbulent velocities develop a Kolmogorov cascade. The thermodynamic
perturbations act as effective tracers of the velocity field, broadly
consistent with the Kolmogorov-Obukhov-Corrsin advection theory. Thermal
conduction acts to damp the gas fluctuations, washing out the filamentary
structures and steepening the spectrum, while leaving unaltered the velocity
cascade. The ratio of the velocity and density spectrum thus inverts the
downtrend shown by the non-diffusive models, allowing to probe the presence of
significant conductivity in the ICM.Comment: Accepted by A&A; 15 pages, 10 figures; added insights and references
- thank you for the positive feedbac
Quantifying properties of ICM inhomogeneities
We present a new method to identify and characterize the structure of the
intracluster medium (ICM) in simulated galaxy clusters. The method uses the
median of gas properties, such as density and pressure, which we show to be
very robust to the presence of gas inhomogeneities. In particular, we show that
the radial profiles of median gas properties are smooth and do not exhibit
fluctuations at locations of massive clumps in contrast to mean and mode
properties. It is shown that distribution of gas properties in a given radial
shell can be well described by a log-normal PDF and a tail. The former
corresponds to a nearly hydrostatic bulk component, accounting for ~99% of the
volume, while the tail corresponds to high density inhomogeneities. We show
that this results in a simple and robust separation of the diffuse and clumpy
components of the ICM. The FWHM of the density distribution grows with radius
and varies from ~0.15 dex in cluster centre to ~0.5 dex at 2r_500 in relaxed
clusters. The small scatter in the width between relaxed clusters suggests that
the degree of inhomogeneity is a robust characteristic of the ICM. It broadly
agrees with the amplitude of density perturbations in the Coma cluster. We
discuss the origin of ICM density variations in spherical shells and show that
less than 20% of the width can be attributed to the triaxiality of the cluster
gravitational potential. As a link to X-ray observations of real clusters we
evaluated the ICM clumping factor with and without high density
inhomogeneities. We argue that these two cases represent upper and lower limits
on the departure of the observed X-ray emissivity from the median value. We
find that the typical value of the clumping factor in the bulk component of
relaxed clusters varies from ~1.1-1.2 at r_500 up to ~1.3-1.4 at r_200, in
broad agreement with recent observations.Comment: 16 pages, 12 figure, accepted to MNRA
Lattice Gauge Actions for Fixed Topology
We test a set of lattice gauge actions for QCD that suppress small plaquette
values and in this way also suppress transitions between topological sectors.
This is well suited for simulations in the epsilon-regime and it is expected to
help in numerical simulations with dynamical quarks.Comment: 3 pages. Talk presented at Quark Confinement and the Hadron Spectrum
VI, Villasimius, Sardinia, Italy, September 21-25, 2004. References adde
The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations
We address the problem of evaluating the power spectrum of the velocity field
of the ICM using only information on the plasma density fluctuations, which can
be measured today by Chandra and XMM-Newton observatories. We argue that for
relaxed clusters there is a linear relation between the rms density and
velocity fluctuations across a range of scales, from the largest ones, where
motions are dominated by buoyancy, down to small, turbulent scales:
, where
is the spectral amplitude of the density perturbations at wave number ,
is the mean square component of the velocity field,
is the sound speed, and is a dimensionless constant of order unity.
Using cosmological simulations of relaxed galaxy clusters, we calibrate this
relation and find . We argue that this value is set at
large scales by buoyancy physics, while at small scales the density and
velocity power spectra are proportional because the former are a passive scalar
advected by the latter. This opens an interesting possibility to use gas
density power spectra as a proxy for the velocity power spectra in relaxed
clusters, across a wide range of scales.Comment: 6 pages, 3 figures, submitted to ApJ Letter
Meson Correlation Functions in the epsilon-Regime
We present a numerical pilot study of the meson correlation functions in the
epsilon-regime of chiral perturbation theory. Based on simulations with overlap
fermions we measured the axial and pseudo-scalar correlation functions, and we
discuss the implications for the leading low energy constants in the chiral
Lagrangian.Comment: 3 pages, 3 figures, talk presented at Lattice2003(chiral
Solutions to the ultradiscrete Toda molecule equation expressed as minimum weight flows of planar graphs
We define a function by means of the minimum weight flow on a planar graph
and prove that this function solves the ultradiscrete Toda molecule equation,
its B\"acklund transformation and the two dimensional Toda molecule equation.
The method we employ in the proof can be considered as fundamental to the
integrability of ultradiscrete soliton equations.Comment: 14 pages, 10 figures Added citations in v
Theory of Suspension Segregation in Partially Filled Horizontal Rotating Cylinders
It is shown that a suspension of particles in a partially-filled, horizontal,
rotating cylinder is linearly unstable towards axial segregation and an
undulation of the free surface at large enough particle concentrations. Relying
on the shear-induced diffusion of particles, concentration-dependent viscosity,
and the existence of a free surface, our theory provides an explanation of the
experiments of Tirumkudulu et al., Phys. Fluids 11, 507-509 (1999); ibid. 12,
1615 (2000).Comment: Accepted for publication in Phys Fluids (Lett) 10 pages, two eps
figure
Topology conserving gauge action and the overlap-Dirac operator
We apply the topology conserving gauge action proposed by Luescher to the
four-dimensional lattice QCD simulation in the quenched approximation. With
this gauge action the topological charge is stabilized along the hybrid Monte
Carlo updates compared to the standard Wilson gauge action. The quark potential
and renormalized coupling constant are in good agreement with the results
obtained with the Wilson gauge action. We also investigate the low-lying
eigenvalue distribution of the hermitian Wilson-Dirac operator, which is
relevant for the construction of the overlap-Dirac operator.Comment: 27pages, 11figures, accepted versio
- …