2,369 research outputs found

    A simple model for the quenching of pairing correlations effects in rigidly deformed rotational bands

    Full text link
    Using Chandrasekhar's S-type coupling between rotational and intrinsic vortical modes one may simply reproduce the HFB dynamical properties of rotating nuclei within Routhian HF calculations free of pairing correlations yet constrained on the relevant so-called Kelvin circulation operator. From the analogy between magnetic and rotating systems, one derives a model for the quenching of pairing correlations with rotation, introducing a critical angular velocity -- analogous to the critical field in supraconductors -- above which pairing vanishes. Taking stock of this usual model, it is then shown that the characteristic behavior of the vortical mode angular velocity as a function of the global rotation angular velocity can be modelised by a simple two parameter formula, both parameters being completely determined from properties of the band-head (zero-spin) HFB solution. From calculation in five nuclei, the validity of this modelised Routhian approach is assessed. It is clearly shown to be very good in cases where the evolution of rotational properties is only governed by the coupling between the global rotation and the pairing-induced intrinsic vortical currents. It therefore provides a sound ground base for evaluating the importance of coupling of rotation with other modes (shape distortions, quasiparticle degrees of freedom).Comment: 10 pages, 8 figures. Submited to PR

    History-sensitive accumulation rules for life-time prediction under variable loading

    Get PDF
    This is the post-print version of the article. The official published version can be obtained from the link below - Copyright @ 2011 SpringerA general form of temporal strength conditions under variable creep loading is employed to formulate several new phenomenological accumulation rules based on the constant-loading durability diagram. Unlike the well-known Robinson rule of linear accumulation of partial life-times, the new rules allow to describe the life-time sensibility to the load sequence, observed in experiments. Comparison of the new rules with experimental data shows that they fit the data much more accurately than the Robinson rule

    Tagging the pion quark structure in QCD

    Full text link
    We combine the constraints on the pion quark structure available from perturbative QCD, nonperturbative QCD (nonlocal QCD sum rules and light cone sum rules) with the analysis of current data on F_{\pi\gamma\gamma^*}(Q^2), including recent high-precision lattice calculations of the second moment of the pion's distribution amplitude. We supplement these constraints with those extracted from the renormalon approach by means of the twist-four contributions to the pion distribution amplitude in order to further increase stability with respect to related theoretical uncertainties. We show which regions in the space of the first two non-trivial Gegenbauer coefficients a_2 and a_4 of all these constraints overlap, tagging this way the pion structure to the highest degree possible at present.Comment: V1: 6 pages, 2 figures, 1 table. V2: Two references added with corresponding insertions in the text. Matches version published in PR

    Characteristic Lie rings, finitely-generated modules and integrability conditions for 2+1 dimensional lattices

    Full text link
    Characteristic Lie rings for Toda type 2+1 dimensional lattices are defined. Some properties of these rings are studied. Infinite sequence of special kind modules are introduced. It is proved that for known integrable lattices these modules are finitely generated. Classification algorithm based on this observation is briefly discussed.Comment: 11 page

    Two-component generalizations of the Camassa-Holm equation

    Get PDF
    A classification of integrable two-component systems of non-evolutionary partial differential equations that are analogous to the Camassa-Holm equation is carried out via the perturbative symmetry approach. Independently, a classification of compatible pairs of Hamiltonian operators is carried out, which leads to bi-Hamiltonian structures for the same systems of equations. Some exact solutions and Lax pairs are also constructed for the systems considered

    Derivation of the particle dynamics from kinetic equations

    Full text link
    We consider the microscopic solutions of the Boltzmann-Enskog equation discovered by Bogolyubov. The fact that the time-irreversible kinetic equation has time-reversible microscopic solutions is rather surprising. We analyze this paradox and show that the reversibility or irreversibility property of the Boltzmann-Enskog equation depends on the considered class of solutions. If the considered solutions have the form of sums of delta-functions, then the equation is reversible. If the considered solutions belong to the class of continuously differentiable functions, then the equation is irreversible. Also, we construct the so called approximate microscopic solutions. These solutions are continuously differentiable and they are reversible on bounded time intervals. This analysis suggests a way to reconcile the time-irreversible kinetic equations with the time-reversible particle dynamics. Usually one tries to derive the kinetic equations from the particle dynamics. On the contrary, we postulate the Boltzmann-Enskog equation or another kinetic equation and treat their microscopic solutions as the particle dynamics. So, instead of the derivation of the kinetic equations from the microdynamics we suggest a kind of derivation of the microdynamics from the kinetic equations.Comment: 18 pages; some misprints have been corrected, some references have been adde

    On the equivalence of pairing correlations and intrinsic vortical currents in rotating nuclei

    Full text link
    The present paper establishes a link between pairing correlations in rotating nuclei and collective vortical modes in the intrinsic frame. We show that the latter can be embodied by a simple S-type coupling a la Chandrasekhar between rotational and intrinsic vortical collective modes. This results from a comparison between the solutions of microscopic calculations within the HFB and the HF Routhian formalisms. The HF Routhian solutions are constrained to have the same Kelvin circulation expectation value as the HFB ones. It is shown in several mass regions, pairing regimes, and for various spin values that this procedure yields moments of inertia, angular velocities, and current distributions which are very similar within both formalisms. We finally present perspectives for further studies.Comment: 8 pages, 4 figures, submitted to Phys. Rev.
    corecore