25 research outputs found
Energy Disaggregation using Two-Stage Fusion of Binary Device Detectors
A data-driven methodology to improve the energy disaggregation accuracy during Non-Intrusive Load Monitoring is proposed. In detail, the method is using a two-stage classification scheme, with the first stage consisting of classification models processing the aggregated signal in parallel and each of them producing a binary device detection score, and the second stage consisting of fusion regression models for estimating the power consumption for each of the electrical appliances. The accuracy of the proposed approach was tested on three datasets (ECO, REDD and iAWE), which are available online, using four different classifiers. The presented approach improves the estimation accuracy by up to 4.1% with respect to a basic energy disaggregation architecture, while the improvement on device level was up to 10.1%. Analysis on device level showed significant improvement of power consumption estimation accuracy especially for continuous and non-linear appliances across all evaluated datasets
Colour Constancy for Image of Non-Uniformly Lit Scenes
Digital camera sensors are designed to record all incident light from a captured scene but they are unable to distinguish between the colour of the light source and the true colour of objects. The resulting captured image exhibits a colour cast toward the colour of light source. This paper presents a colour constancy algorithm for images of scenes lit by non-uniform light sources. The proposed algorithm uses a histogram-based algorithm to determine the number of colour regions. It then applies the K-means++ algorithm on the input image, dividing the image into its segments. The proposed algorithm computes the Normalized Average Absolute Difference (NAAD) for each segment and uses it as a measure to determine if the segment has sufficient colour variations. The initial colour constancy adjustment factors for each segment with sufficient colour variation is calculated. The Colour Constancy Adjustment Weighting Factors (CCAWF) for each pixel of the image are determined by fusing the CCAWFs of the segments, weighted by their normalized Euclidian distance of the pixel from the center of the segments. Results show that the proposed method outperforms the statistical techniques and its images exhibit significantly higher subjective quality to those of the learning-based methods. In addition, the execution time of the proposed algorithm is comparable to statistical-based techniques and is much lower than those of the state-of-the-art learning-based methods
Illegal logging detection based on acoustic surveillance of forest
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. In this article, we present a framework for automatic detection of logging activity in forests using audio recordings. The framework was evaluated in terms of logging detection classification performance and various widely used classification methods and algorithms were tested. Experimental setups, using different ratios of sound-to-noise values, were followed and the best classification accuracy was reported by the support vector machine algorithm. In addition, a postprocessing scheme on decision level was applied that provided an improvement in the performance of more than 1%, mainly in cases of low ratios of sound-to-noise. Finally, we evaluated a late-stage fusion method, combining the postprocessed recognition results of the three top-performing classifiers, and the experimental results showed a further improvement of approximately 2%, in terms of absolute improvement, with logging sound recognition accuracy reaching 94.42% when the ratio of sound-to-noise was equal to 20 dB
Seizure detection using EEG and ECG signals for computer-based monitoring, analysis and management of epileptic patients
This is the accepted manuscript version of the following article: Iosif Mporas, “Seizure detection using EEG and ECG signals for computer-based monitoring, analysis and management of epileptic patients”, Expert Systems with Applications, Vol. 42(6), December 2014. The final published version is available at: http://www.sciencedirect.com/science/article/pii/S0957417414007763?via%3Dihub © 2014 Elsevier Ltd. All rights reserved.In this paper a seizure detector using EEG and ECG signals, as a module of a healthcare system, is presented. Specifically, the module is based on short-time analysis with time-domain and frequency-domain features and classification using support vector machines. The seizure detection module was evaluated on three subjects with diagnosed idiopathic generalized epilepsy manifested with absences. The achieved seizure detection accuracy was approximately 90% for all evaluated subjects. Feature ranking investigation and evaluation of the seizure detection module using subsets of features showed that the feature vector composed of approximately the 65%-best ranked parameters provides a good trade-off between computational demands and accuracy. This configurable architecture allows the seizure detection module to operate as part of a healthcare system in offline mode as well as in online mode, where real-time performance is needed.Peer reviewe
Identification of TV Channel Watching from Smart Meter Data Using Energy Disaggregation
Smart meters are used to measure the energy consumption of households. Specifically, within the energy consumption task, a smart meter must be used for load forecasting, the reduction in consumer bills as well as the reduction in grid distortions. Smart meters can be used to disaggregate the energy consumption at the device level. In this paper, we investigated the potential of identifying the multimedia content played by a TV or monitor device using the central house’s smart meter measuring the aggregated energy consumption from all working appliances of the household. The proposed architecture was based on the elastic matching of aggregated energy signal frames with 20 reference TV channel signals. Different elastic matching algorithms, which use symmetric distance measures, were used with the best achieved video content identification accuracy of 93.6% using the MVM algorithm
HyperVein: A Hyperspectral Image Dataset for Human Vein Detection
HyperSpectral Imaging (HSI) plays a pivotal role in various fields, including medical diagnostics, where precise human vein detection is crucial. HyperSpectral (HS) image data are very large and can cause computational complexities. Dimensionality reduction techniques are often employed to streamline HS image data processing. This paper presents a HS image dataset encompassing left- and right-hand images captured from 100 subjects with varying skin tones. The dataset was annotated using anatomical data to represent vein and non-vein areas within the images. This dataset is utilised to explore the effectiveness of dimensionality reduction techniques, namely: Principal Component Analysis (PCA), Folded PCA (FPCA), and Ward’s Linkage Strategy using Mutual Information (WaLuMI) for vein detection. To generate experimental results, the HS image dataset was divided into train and test datasets. Optimum performing parameters for each of the dimensionality reduction techniques in conjunction with the Support Vector Machine (SVM) binary classification were determined using the Training dataset. The performance of the three dimensionality reduction-based vein detection methods was then assessed and compared using the test image dataset. Results show that the FPCA-based method outperforms the other two methods in terms of accuracy. For visualization purposes, the classification prediction image for each technique is post-processed using morphological operators, and results show the significant potential of HS imaging in vein detection
Improving classification of epileptic and non-epileptic EEG events by feature selection
This is the Accepted Manuscript version of the following article: E. Pippa, et al, “Improving classification of epileptic and non-epileptic EEG events by feature selection”, Neurocomputing, Vol. 171: 576-585, July 2015. The final published version is available at: http://www.sciencedirect.com/science/article/pii/S0925231215009509?via%3Dihub Copyright © 2015 Elsevier B.V.Correctly diagnosing generalized epileptic from non-epileptic episodes, such as psychogenic non epileptic seizures (PNES) and vasovagal or vasodepressor syncope (VVS), despite its importance for the administration of appropriate treatment, life improvement of the patient, and cost reduction for patient and healthcare system, is rarely tackled in the literature. Usually clinicians differentiate between generalized epileptic seizures and PNES based on clinical features and video-EEG. In this work, we investigate the use of machine learning techniques for automatic classification of generalized epileptic and non-epileptic events based only on multi-channel EEG data. For this purpose, we extract the signal patterns in the time domain and in the frequency domain and then combine all features across channels to characterize the spatio-temporal manifestation of seizures. Several classification algorithms are explored and evaluated on EEG epochs from 11 subjects in an inter-subject cross-validation setting. Due to large number of features feature ranking and selection is performed prior to classification using the ReliefF ranking algorithm within two different voting strategies. The classification models using feature subsets, achieved higher accuracy compared to the models using all features reaching 95% (Bayesian Network), 89% (Random Committee) and 87% (Random Forest) for binary classification (epileptic versus non-epileptic). The results demonstrate the competitiveness of this approach as opposed to previous methods.Peer reviewe
A machine learning approach for predicting critical factors determining adoption of off-site construction in Nigeria
Purpose (limit 100 words) Several factors influence OSC adoption, but extant literature did not articulate the dominant barriers or drivers influencing adoption. Therefore, this research has not only ventured into analyzing the core influencing factors but has also employed one of the best-known predictive means, Machine Learning, to identify the most influencing OSC adoption factors. Design/methodology/approach (limit 100 words) The research approach is deductive in nature, focusing on finding out the most critical factors through literature review and reinforcing the factors through a 5- point Likert scale survey questionnaire. The responses received were tested for reliability before being run through Machine Learning algorithms to determine the most influencing OSC factors within the Nigerian Construction Industry (NCI). Findings (limit 100 words) The research outcome identifies seven (7) best-performing algorithms for predicting OSC adoption: Decision Tree, Random Forest, K-Nearest Neighbour, Extra-Trees, AdaBoost, Support Vector Machine, and Artificial Neural Network. It also reported finance, awareness, use of Building Information Modeling (BIM), and belief in OSC as the main influencing factors. Research limitations/implications (limit 100 words) Data were primarily collected among the NCI professionals/workers and the whole exercise was Nigeria region-based. The research outcome, however, provides a foundation for OSC adoption potential within Nigeria, Africa and beyond. Practical implications (limit 100 words) The research concluded that with detailed attention paid to the identified factors, OSC usage could find its footing in Nigeria and, consequently, Africa. The models can also serve as a template for other regions where OSC adoption is being considered. Originality/value (limit 100 words) The research establishes the most effective algorithms for the prediction of OSC adoption possibilities as well as critical influencing factors to successfully adopting OSC within the NCI as a means to surmount its housing shortage
Automatic Segmentation of Greek Speech Signals to Broad Phonemic Classes
Abstract-In this paper, we evaluate an implicit approach for the automatic detection of broad phonemic class boundaries of continuous speech signals. The reported method is consisted of the prior segmentation of speech signal into pitch-synchronous segments, using pitchmark locations, for the computation of adjacent broad phonemic class boundaries. The approach’s validity was tested on a phonetically rich Greek speech corpus. Our framework’s results were very promising since by this method we achieved 25 msec accuracy of 76,1%, without presenting over-segmentation on the speech signal