73 research outputs found

    The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution

    Full text link
    Using our photometric observations taken between 1996 and 2013 and other published data, we derived properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty area of 4{\deg}, and the orbital period is 16.1508 +/- 0.0002 h (all quoted uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +/- 0.20 deg/yr^2, i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory of an equilibrium between BYORP and tidal torques for synchronous binary asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D. [2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5 uncertain by a factor of five. We also derived a product of the rigidity and quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems.Comment: Many changes based on referees comment

    YORP and Yarkovsky effects in asteroids (1685) Toro, (2100) Ra-Shalom, (3103) Eger, and (161989) Cacus

    Full text link
    The rotation states of small asteroids are affected by a net torque arising from an anisotropic sunlight reflection and thermal radiation from the asteroids' surfaces. On long timescales, this so-called YORP effect can change asteroid spin directions and their rotation periods. We analyzed lightcurves of four selected near-Earth asteroids with the aim of detecting secular changes in their rotation rates that are caused by YORP. We use the lightcurve inversion method to model the observed lightcurves and include the change in the rotation rate dω/dt\mathrm{d} \omega / \mathrm{d} t as a free parameter of optimization. We collected more than 70 new lightcurves. For asteroids Toro and Cacus, we used thermal infrared data from the WISE spacecraft and estimated their size and thermal inertia. We also used the currently available optical and radar astrometry of Toro, Ra-Shalom, and Cacus to infer the Yarkovsky effect. We detected a YORP acceleration of dω/dt=(1.9±0.3)×10−8 rad d−2\mathrm{d}\omega / \mathrm{d} t = (1.9 \pm 0.3) \times 10^{-8}\,\mathrm{rad}\,\mathrm{d}^{-2} for asteroid Cacus. For Toro, we have a tentative (2σ2\sigma) detection of YORP from a significant improvement of the lightcurve fit for a nonzero value of dω/dt=3.0×10−9 rad d−2\mathrm{d}\omega / \mathrm{d} t = 3.0 \times 10^{-9}\,\mathrm{rad}\,\mathrm{d}^{-2}. For asteroid Eger, we confirmed the previously published YORP detection with more data and updated the YORP value to (1.1±0.5)×10−8 rad d−2(1.1 \pm 0.5) \times 10^{-8}\,\mathrm{rad}\,\mathrm{d}^{-2}. We also updated the shape model of asteroid Ra-Shalom and put an upper limit for the change of the rotation rate to ∣dω/dt∣≲1.5×10−8 rad d−2|\mathrm{d}\omega / \mathrm{d} t| \lesssim 1.5 \times 10^{-8}\,\mathrm{rad}\,\mathrm{d}^{-2}. Ra-Shalom has a greater than 3σ3\sigma Yarkovsky detection with a theoretical value consistent with observations assuming its size and/or density is slightly larger than the nominally expected values

    Analysis of the rotation period of asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger - search for the YORP effect

    Full text link
    The spin state of small asteroids can change on a long timescale by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, the net torque that arises from anisotropically scattered sunlight and proper thermal radiation from an irregularly-shaped asteroid. The secular change in the rotation period caused by the YORP effect can be detected by analysis of asteroid photometric lightcurves. We analyzed photometric lightcurves of near-Earth asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger with the aim to detect possible deviations from the constant rotation caused by the YORP effect. We carried out new photometric observations of the three asteroids, combined the new lightcurves with archived data, and used the lightcurve inversion method to model the asteroid shape, pole direction, and rotation rate. The YORP effect was modeled as a linear change in the rotation rate in time d\omega /dt. Values of d\omega/ dt derived from observations were compared with the values predicted by theory. We derived physical models for all three asteroids. We had to model Eger as a nonconvex body because the convex model failed to fit the lightcurves observed at high phase angles. We probably detected the acceleration of the rotation rate of Eger d\omega / dt = (1.4 +/- 0.6) x 10^{-8} rad/d (3\sigma error), which corresponds to a decrease in the rotation period by 4.2 ms/yr. The photometry of Cerberus and Ra-Shalom was consistent with a constant-period model, and no secular change in the spin rate was detected. We could only constrain maximum values of |d\omega / dt| < 8 x 10^{-9} rad/d for Cerberus, and |d\omega / dt| < 3 x 10^{-8} rad/d for Ra-Shalom

    Comparative analysis of oxidative metabolism indicators at acute alcohol and acute surrogate alcohol intoxication

    Get PDF
    High level of population alcoholization is the cause of many cases of acute alcohol and alcoholic surrogate intoxication. The number of alcohol intoxication cases in Kazakhstan in 2014 amounted to 13891 (80.3 per 100 000 people), the number of fatal intoxication cases amounted to 882 (5.1 per 100 000 people). The problem of alcoholization in Russia remains urgent as well: according to the statistics of 2014,152 551 cases of acute intoxication of chemical etiology were registered, 33.9 % of cases occurred due to alcohol intoxication. Alcoholic beverages in the course of their biotransformation to acetic acid can form oxygen free radicals in particular superoxide anion as a byproduct of acetic aldehyde oxidation reaction. Studies on oxidative metabolism of ethanol intoxication are currently being conducted. At the same time, the state of oxidative metabolism during alcoholic surrogate intoxication was not practically investigated. Evaluation of oxidative metabolism depending on the severity of alcohol or its surrogate intoxication is of special interest. The aim was to compare oxidative metabolism indicators among patients with acute alcohol and alcoholic surrogate intoxication of different severity. The object of the study was blood of 62 people with diagnosed moderate or severe degrees of acute alcohol and alcoholic surrogate intoxication. Indicators of oxidative metabolism in erythrocytes and blood plasma were estimated. Significant differences were found in product concentration of protein oxidation containing bityrosine crosslinks in blood plasma under increase of alcohol intoxication degree
    • …
    corecore