2,216 research outputs found

    Gauge-theory approach to planar doped antiferromagnets and external magnetic fields

    Full text link
    A review is given of a relativistic non-Abelian gauge theory approach to the physics of spin-charge separation in doped quantum antiferromagnetic planar systems, proposed recently by the authors. Emphasis is put on the effects of constant external magnetic fields on excitations about the superconducting state in the model. The electrically-charged Dirac fermions (holons), describing excitations about specific points on the fermi surface, e.g. those corresponding to the nodes of a d-wave superconducting gap in high-TcT_c cuprates, condense, resulting in the opening of a Kosterlitz-Thouless-like gap (KT) at such nodes. In the presence of strong external magnetic fields at the surface regions of the planar superconductor, in the direction perpendicular to the superconducting planes, these KT gaps appear to be enhanced. Our preliminary analysis, based on analytic Scwhinger-Dyson treatments, seems to indicate that for an even number of Dirac fermion species, required in our model as a result of gauging a particle-hole SU(2) symmetry, Parity or Time Reversal violation does not necessarily occurs.Based on these considerations, we argue that recent experimental findings, concerning thermal conductivity plateaux of quasiparticles in planar high-TcT_c cuprates in strong external magnetic fields, may indicate the presence of such KT gaps, caused by charged Dirac-fermion excitations in these materials, as suggested in the above model.Comment: 26 pages LATEX, 6 figures (incorporated) (In this revised version references on magnetic catalysis were added, and also a note was added with a comparison of the theoretical results presented here with a second experiment (cond-mat/9709061), reporting on unconventional superconducting phases in certain cuprates). Journal ref.:Based on Invited talk by N.E.M. at the `5th Chia Workshop on Common Trends in Particle and Condensed Matter Physics', Conference Center, Grand-Hotel Chia-Laguna, Chia, Italy, 1-11 September 199

    Gaseous optical contamination of the spacecraft environment: A review

    Get PDF
    Interactions between the ambient atmosphere and orbiting spacecraft, sounding rockets, and suborbital vehicles, and with their effluents, give rise to optical (extreme UV to LWIR) foreground radiation which constitutes noise that raises the detection threshold for terrestrial and celestial radiations, as well as military targets. Researchers review the current information on the on-orbit optical contamination. Its source species are created in interaction processes that can be grouped into three categories: (1) Reactions in the gas phase between the ambient atmosphere and desorbates and exhaust; (2) Reactions catalyzed by exposed ram surfaces, which occur spontaneously even in the absence of active material releases from the vehicles; and (3) Erosive excitative reactions with exposed bulk (organic) materials, which have recently been identified in the laboratory though not as yet observed on spacecraft. Researchers also assess the effect of optical pumping by earthshine and sunlight of both reaction products and effluents

    Pseudoscalar and vector mesons as q\bar{q} bound states

    Full text link
    Two-body bound states such as mesons are described by solutions of the Bethe-Salpeter equation. We discuss recent results for the pseudoscalar and vector meson masses and leptonic decay constants, ranging from pions up to c\bar{c} bound states. Our results are in good agreement with data. Essential in these calculation is a momentum-dependent quark mass function, which evolves from a constituent-quark mass in the infrared region to a current-quark mass in the perturbative region. In addition to the mass spectrum, we review the electromagnetic form factors of the light mesons. Electromagnetic current conservation is manifest and the influence of intermediate vector mesons is incorporated self-consistently. The results for the pion form factor are in excellent agreement with experiment.Comment: 8 pages, 6 .eps figures, contribution to the proceedings of the first meeting of the APS Topical Group on Hadron Physics, Fermilab, Oct. 200

    K_{l3} transition form factors

    Get PDF
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the meson bound state amplitudes and the dressed quark-W vertex in a manifestly covariant calculation of the K_{l3} transition form factors and decay width in impulse approximation. With model gluon parameters previously fixed by the chiral condensate, the pion mass and decay constant, and the kaon mass, our results for the K_{l3} form factors and the kaon semileptonic decay width are in good agreement with the experimental data.Comment: 8 pages, 3 figures, Revte

    Chiral Extrapolation of Lattice Data for Heavy Meson Hyperfine Splittings

    Full text link
    We investigate the chiral extrapolation of the lattice data for the light-heavy meson hyperfine splittings D^*-D and B^*-B to the physical region for the light quark mass. The chiral loop corrections providing non-analytic behavior in m_\pi are consistent with chiral perturbation theory for heavy mesons. Since chiral loop corrections tend to decrease the already too low splittings obtained from linear extrapolation, we investigate two models to guide the form of the analytic background behavior: the constituent quark potential model, and the covariant model of QCD based on the ladder-rainbow truncation of the Dyson-Schwinger equations. The extrapolated hyperfine splittings remain clearly below the experimental values even allowing for the model dependence in the description of the analytic background.Comment: 14 pages, 4 figures, typos corrected, presentation clarifie

    N3LO NN interaction adjusted to light nuclei in ab exitu approach

    Get PDF
    We use phase-equivalent transformations to adjust off-shell properties of similarity renormalization group evolved chiral effective field theory NN interaction (Idaho N3LO) to fit selected binding energies and spectra of light nuclei in an ab exitu approach. We then test the transformed interaction on a set of additional observables in light nuclei to verify that it provides reasonable descriptions of these observables with an apparent reduced need for three- and many-nucleon interactions.Comment: Revised text due to journal referee comments. 6 pages, 2 figure

    Infrared divergence in QED3_3 at finite temperature

    Full text link
    We consider various ways of treating the infrared divergence which appears in the dynamically generated fermion mass, when the transverse part of the photon propagator in N flavour QED3QED_{3} at finite temperature is included in the Matsubara formalism. This divergence is likely to be an artefact of taking into account only the leading order term in the 1N1 \over N expansion when we calculate the photon propagator and is handled here phenomenologically by means of an infrared cutoff. Inserting both the longitudinal and the transverse part of the photon propagator in the Schwinger-Dyson equation we find the dependence of the dynamically generated fermion mass on the temperature and the cutoff parameters. It turns out that consistency with certain statistical physics arguments imposes conditions on the cutoff parameters. For parameters in the allowed range of values we find that the ratio r=2∗Mass(T=0)/criticaltemperaturer=2*Mass(T=0)/critical temperature is approximately 6, consistently with previous calculations which neglected the transverse photon contribution.Comment: 37 pages, 12 figures, typos corrected, references added, Introduction rewritte

    NN Interaction JISP16: Current Status and Prospect

    Full text link
    We discuss realistic nonlocal NN interactions of a new type - J-matrix Inverse Scattering Potential (JISP). In an ab exitu approach, these interactions are fitted to not only two-nucleon data (NN scattering data and deuteron properties) but also to the properties of light nuclei without referring to three-nucleon forces. We discuss recent progress with the ab initio No-core Shell Model (NCSM) approach and respective progress in developing ab exitu JISP-type NN-interactions together with plans of their forthcoming improvements.Comment: 9 pages, 3 figures, to be published in Proceedings of Few-body 19 conferenc
    • …
    corecore