3,009 research outputs found

    Synthetic studies in the terpene field

    Get PDF
    No abstract available

    Clinical studies of the high-intensity narrow-spectrum light environmental decontamination system (HINS-light EDS), for continuous disinfection in the burn unit inpatient and outpatient settings

    Get PDF
    Infections are the leading cause of morbidity and mortality in burn patients and prevention of contamination from exogenous sources including the hospital environment is becoming increasingly emphasised. The High-Intensity Narrow-Spectrum light Environmental Decontamination System (HINS-light EDS) is bactericidal yet safe for humans, allowing continuous disinfection of the environment surrounding burn patients. Environmental samples were collected from inpatient isolation rooms and the outpatient clinic in the burn unit, and comparisons were then made between the bacterial contamination levels observed with and without use of the HINS-light EDS. Over 1000 samples were taken. Inpatient studies, with sampling carried out at 0800 h, demonstrated a significant reduction in the average number of bacterial colonies following HINS-light EDS use of between 27% and 75%, (p<0.05). There was more variation when samples were taken at times of increased activity in the room. Outpatient studies during clinics demonstrated a 61% efficacy in the reduction of bacterial contamination on surfaces throughout the room during the course of a clinic (p=0.02). The results demonstrate that use of the HINS-light EDS allows efficacious bacterial reductions over and above that achieved by standard cleaning and infection control measures in both inpatient and outpatient settings in the burn unit

    Unusual Symmetries in the Kugel-Khomskii Hamiltonian

    Get PDF
    The Kugel-Khomskii Hamiltonian for cubic titanates describes spin and orbital superexchange interactions between d1d^1 ions having three-fold degenerate t2gt_{2g} orbitals. Since orbitals do not couple along "inactive" axes, perpendicular to the orbital planes, the total number of electrons in α>|\alpha > orbitals in any such plane and the corresponding total spin are both conserved. A Mermin-Wagner construction shows that there is no long-range spin ordering at nonzero temperatures. Inclusion of spin-orbit coupling allows such ordering, but even then the excitation spectrum is gapless due to a continuous symmetry. Thus, the observed order and gap require more symmetry breaking terms.Comment: 4 pages (two column format with 2 figures), to appear in Phys. Rev. Lett. (submitted on Dec. 2002

    Explicit volume-preserving numerical schemes for relativistic trajectories and spin dynamics

    Full text link
    A class of explicit numerical schemes is developed to solve for the relativistic dynamics and spin of particles in electromagnetic fields, using the Lorentz-BMT equation formulated in the Clifford algebra representation of Baylis. It is demonstrated that these numerical methods, reminiscent of the leapfrog and Verlet methods, share a number of important properties: they are energy-conserving, volume-conserving and second order convergent. These properties are analysed empirically by benchmarking against known analytical solutions in constant uniform electrodynamic fields. It is demonstrated that the numerical error in a constant magnetic field remains bounded for long time simulations in contrast to the Boris pusher, whose angular error increases linearly with time. Finally, the intricate spin dynamics of a particle is investigated in a plane wave field configuration.Comment: 15 pages, 9 figure

    Electromechanical forces acting on bio-membranes in external electric fields

    Get PDF
    Membranes of microorganisms stressed with electric field can be deformed and ruptured due to unbalanced electro-mechanical forces. The paper provides an analytical analysis of the forces acting on bio-membranes in liquid and gaseous environment. This model can help in optimisation and further development of novel field and plasma based decontamination methods
    corecore