13 research outputs found

    Impacts of Mixed‐Wettability on Brine Drainage and Supercritical CO 2

    No full text

    Velocity distributions in trapped and mobilized non-wetting phase ganglia in porous media

    No full text
    Understanding the mobilisation of trapped globules of non-wetting phase during two-phase flow has been the aim of numerous studies. However, the driving forces for the mobilisation of the trapped phases are still not well understood. Also, there is little information about what happens within a globule before, at the onset and during mobilization. In this work, we used micro-particle tracking velocimetry in a micro-fluidic model in order to visualise the velocity distributions inside the trapped phase globules prior and during mobilisation. Therefore, time-averaged and instantaneous velocity vectors have been determined using fluorescent microscopy. As a porous medium, we used a polydimethylsiloxane (PDMS) micro-model with a well-defined pore structure, where drainage and imbibition experiments were conducted. Three different geometries of trapped non-wetting globules, namely droplets, blobs and ganglia were investigated. We observed internal circulations inside the trapped phase globules, leading to the formation of vortices. The direction of circulating flow within a globule is dictated by the drag force exerted on it by the flowing wetting phase. This is illustrated by calculating and analyzing the drag force (per unit area) along fluid-fluid interfaces. In the case of droplets and blobs, only one vortex is formed. The flow field within a ganglion is much more complex and more vortices can be formed. The circulation velocities are largest at the fluid-fluid interfaces, along which the wetting phase flows and decreases towards the middle of the globule. The circulation velocities increased proportionally with the increase of wetting phase average velocity (or capillary number). The vortices remain stable as long as the globules are trapped, start to change at the onset of mobilization and disappear during the movement of globules. They reappear when the globules get stranded. Droplets are less prone to mobilization; blobs get mobilised in whole; while ganglia may get ruptured and get mobilised only partially

    Velocity distributions in trapped and mobilized non-wetting phase ganglia in porous media

    No full text
    Understanding the mobilisation of trapped globules of non-wetting phase during two-phase flow has been the aim of numerous studies. However, the driving forces for the mobilisation of the trapped phases are still not well understood. Also, there is little information about what happens within a globule before, at the onset and during mobilization. In this work, we used micro-particle tracking velocimetry in a micro-fluidic model in order to visualise the velocity distributions inside the trapped phase globules prior and during mobilisation. Therefore, time-averaged and instantaneous velocity vectors have been determined using fluorescent microscopy. As a porous medium, we used a polydimethylsiloxane (PDMS) micro-model with a well-defined pore structure, where drainage and imbibition experiments were conducted. Three different geometries of trapped non-wetting globules, namely droplets, blobs and ganglia were investigated. We observed internal circulations inside the trapped phase globules, leading to the formation of vortices. The direction of circulating flow within a globule is dictated by the drag force exerted on it by the flowing wetting phase. This is illustrated by calculating and analyzing the drag force (per unit area) along fluid-fluid interfaces. In the case of droplets and blobs, only one vortex is formed. The flow field within a ganglion is much more complex and more vortices can be formed. The circulation velocities are largest at the fluid-fluid interfaces, along which the wetting phase flows and decreases towards the middle of the globule. The circulation velocities increased proportionally with the increase of wetting phase average velocity (or capillary number). The vortices remain stable as long as the globules are trapped, start to change at the onset of mobilization and disappear during the movement of globules. They reappear when the globules get stranded. Droplets are less prone to mobilization; blobs get mobilised in whole; while ganglia may get ruptured and get mobilised only partially

    Effect of Nanoscale Surface Textures on Multiphase Flow Dynamics in Capillaries

    No full text
    Multiphase flow through porous media is important in a wide range of environmental applications such as enhanced oil recovery and geologic storage of CO2. Recent in situ observations of the three-phase contact line between immiscible fluid phases and solid surfaces suggest that existing models may not fully capture the effects of nanoscale surface textures, impacting flow prediction. To better characterize the role of surface roughness in these systems, spontaneous and forced imbibition experiments were carried out using glass capillaries with modified surface roughness or wettability. Dynamic contact angle and interfacial speed deviation, both resulting from stick-slip flow conditions, were measured to understand the impact these microscale dynamics would have on macroscale flow processes. A 2k factorial experimental design was used to test the ways in which the dynamic contact angle was impacted by the solid surface properties (e.g., wettability, roughness), ionic strength in the aqueous phase, nonaqueous fluid type (water/Fluorinert and water/dodecane), and the presence/absence of a wetting film prior to the imbibition of the wetting phase. The analysis of variance of spontaneous imbibition results suggests that surface roughness and ionic strength play important roles in controlling dynamic contact angle in porous media, more than other factors tested here. The presence of a water film alone does not affect dynamic contact angle, but its interactions with surface roughness and aqueous chemistry have a statistically significant effect. Both forced imbibition and spontaneous imbibition experiments suggest that nanoscale textures can have a larger impact on flow dynamics than chemical wettability. These experimental results are used to extend the Joos and Wenzel equations relating apparent static and dynamic contact angles to roughness, presence of a water film, and water chemistry. The new empirical equation improves prediction accuracy by taking water film and aqueous chemistry into account, reducing error by up to 50%

    Study of Multi-phase Flow in Porous Media: Comparison of SPH Simulations with Micro-model Experiments

    No full text
    We present simulations and experiments of drainage processes in a micro-model. A direct numerical simulation is introduced which is capable of describing wetting phenomena on the pore scale. A numerical smoothed particle hydrodynamics model was developed and used to simulate the two-phase flow of immiscible fluids. The experiments were performed in a micro-model which allows the visualization of interface propagation in detail. We compare the experiments and simulations of a quasistatic drainage process and pure dynamic drainage processes. For both, simulation and experiment, the interfacial area and the pressure at the inflow and outflow are tracked. The capillary pressure during the dynamic drainage process was determined by image analysis

    Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method

    No full text
    Two-phase flow in three porous media with different geometry complexities are simulated using the Volume-of-Fluid (VOF) method. The evolution of the flow pattern, as well as the dynamics involved are simulated and compared to experiments. For a simple geometry and smooth solid surface, like single capillary rise experiment, VOF simulation gives results which are in good agreement with the experiments. For a micromodel, with a relatively simple geometry, we can predict the flow pattern while we cannot effectively capture the dynamics of the process in terms of the temporal evolution of flow. With an increase in the geometry complexity in another micromodel, we fail to predict both the flow pattern and the flow dynamics. The reasons for this failure are discussed: interface modeling, pinning of contact line, 3D effects and the sensitivity of the system to initial and boundary conditions. More work regarding benchmarking of pore-scale methods in combination with experiments with different geometry complexities is needed. Also, possibilities and the potential to make better use of the porous media structure data from advanced visualization methods should be addressed

    Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method

    No full text
    Two-phase flow in three porous media with different geometry complexities are simulated using the Volume-of-Fluid (VOF) method. The evolution of the flow pattern, as well as the dynamics involved are simulated and compared to experiments. For a simple geometry and smooth solid surface, like single capillary rise experiment, VOF simulation gives results which are in good agreement with the experiments. For a micromodel, with a relatively simple geometry, we can predict the flow pattern while we cannot effectively capture the dynamics of the process in terms of the temporal evolution of flow. With an increase in the geometry complexity in another micromodel, we fail to predict both the flow pattern and the flow dynamics. The reasons for this failure are discussed: interface modeling, pinning of contact line, 3D effects and the sensitivity of the system to initial and boundary conditions. More work regarding benchmarking of pore-scale methods in combination with experiments with different geometry complexities is needed. Also, possibilities and the potential to make better use of the porous media structure data from advanced visualization methods should be addressed

    Effect of Nanoscale Surface Textures on Multiphase Flow Dynamics in Capillaries

    No full text
    Multiphase flow through porous media is important in a wide range of environmental applications such as enhanced oil recovery and geologic storage of CO2. Recent in situ observations of the three-phase contact line between immiscible fluid phases and solid surfaces suggest that existing models may not fully capture the effects of nanoscale surface textures, impacting flow prediction. To better characterize the role of surface roughness in these systems, spontaneous and forced imbibition experiments were carried out using glass capillaries with modified surface roughness or wettability. Dynamic contact angle and interfacial speed deviation, both resulting from stick-slip flow conditions, were measured to understand the impact these microscale dynamics would have on macroscale flow processes. A 2k factorial experimental design was used to test the ways in which the dynamic contact angle was impacted by the solid surface properties (e.g., wettability, roughness), ionic strength in the aqueous phase, nonaqueous fluid type (water/Fluorinert and water/dodecane), and the presence/absence of a wetting film prior to the imbibition of the wetting phase. The analysis of variance of spontaneous imbibition results suggests that surface roughness and ionic strength play important roles in controlling dynamic contact angle in porous media, more than other factors tested here. The presence of a water film alone does not affect dynamic contact angle, but its interactions with surface roughness and aqueous chemistry have a statistically significant effect. Both forced imbibition and spontaneous imbibition experiments suggest that nanoscale textures can have a larger impact on flow dynamics than chemical wettability. These experimental results are used to extend the Joos and Wenzel equations relating apparent static and dynamic contact angles to roughness, presence of a water film, and water chemistry. The new empirical equation improves prediction accuracy by taking water film and aqueous chemistry into account, reducing error by up to 50%

    Study of Multi-phase Flow in Porous Media: Comparison of SPH Simulations with Micro-model Experiments

    No full text
    We present simulations and experiments of drainage processes in a micro-model. A direct numerical simulation is introduced which is capable of describing wetting phenomena on the pore scale. A numerical smoothed particle hydrodynamics model was developed and used to simulate the two-phase flow of immiscible fluids. The experiments were performed in a micro-model which allows the visualization of interface propagation in detail. We compare the experiments and simulations of a quasistatic drainage process and pure dynamic drainage processes. For both, simulation and experiment, the interfacial area and the pressure at the inflow and outflow are tracked. The capillary pressure during the dynamic drainage process was determined by image analysis
    corecore