446 research outputs found

    Instability of Myelin Tubes under Dehydration: deswelling of layered cylindrical structures

    Full text link
    We report experimental observations of an undulational instability of myelin figures. Motivated by this, we examine theoretically the deformation and possible instability of concentric, cylindrical, multi-lamellar membrane structures. Under conditions of osmotic stress (swelling or dehydration), we find a stable, deformed state in which the layer deformation is given by \delta R ~ r^{\sqrt{B_A/(hB)}}, where B_A is the area compression modulus, B is the inter-layer compression modulus, and h is the repeat distance of layers. Also, above a finite threshold of dehydration (or osmotic stress), we find that the system becomes unstable to undulations, first with a characteristic wavelength of order \sqrt{xi d_0}, where xi is the standard smectic penetration depth and d_0 is the thickness of dehydrated region.Comment: 5 pages + 3 figures [revtex 4

    Lattice Boltzmann Simulations of Liquid Crystal Hydrodynamics

    Full text link
    We describe a lattice Boltzmann algorithm to simulate liquid crystal hydrodynamics. The equations of motion are written in terms of a tensor order parameter. This allows both the isotropic and the nematic phases to be considered. Backflow effects and the hydrodynamics of topological defects are naturally included in the simulations, as are viscoelastic properties such as shear-thinning and shear-banding.Comment: 14 pages, 5 figures, Revte

    The physical determinants of the thickness of lamellar polymer crystals

    Full text link
    Based upon kinetic Monte Carlo simulations of crystallization in a simple polymer model we present a new picture of the mechanism by which the thickness of lamellar polymer crystals is constrained to a value close to the minimum thermodynamically stable thickness. This description contrasts with those given by the two dominant theoretical approaches.Comment: 4 pages, 4 figures, revte

    Measurement of Inverse Pion Photoproduction at Energies Spanning the N(1440) Resonance

    Full text link
    Differential cross sections for the process pi^- p -> gamma n have been measured at Brookhaven National Laboratory's Alternating Gradient Synchrotron with the Crystal Ball multiphoton spectrometer. Measurements were made at 18 pion momenta from 238 to 748 MeV/c, corresponding to E_gamma for the inverse reaction from 285 to 769 MeV. The data have been used to evaluate the gamma n multipoles in the vicinity of the N(1440) resonance. We compare our data and multipoles to previous determinations. A new three-parameter SAID fit yields 36 +/- 7 (GeV)^-1/2 X 10^-3 for the A^n_1/2 amplitude of the P_11.Comment: 14 pages, 8 figures, submitted to PR

    Spinodal-assisted crystallization in polymer melts

    Get PDF
    Recent experiments in some polymer melts quenched below the melting temperature have reported spinodal kinetics in small-angle x-ray scattering before the emergence of a crystalline structure. To explain these observations we propose that the coupling between density and chain conformation induces a liquid-liquid binodal within the equilibrium liquid-crystalline solid coexistence region. A simple phenomenological theory is developed to illustrate this idea, and several experimentally testable consequences are discussed. Shear is shown to enhance the kinetic role of the hidden binodal

    Strong-Segregation Theory of Bicontinuous Phases in Block Copolymers

    Full text link
    We compute phase diagrams for AnBmA_nB_m starblock copolymers in the strong-segregation regime as a function of volume fraction ϕ\phi, including bicontinuous phases related to minimal surfaces (G, D, and P surfaces) as candidate structures. We present the details of a general method to compute free energies in the strong segregation limit, and demonstrate that the gyroid G phase is the most nearly stable among the bicontinuous phases considered. We explore some effects of conformational asymmetry on the topology of the phase diagram.Comment: 14 pages, latex, 21 figures, to appear in Macromolecule

    Soft and non-soft structural transitions in disordered nematic networks

    Get PDF
    Properties of disordered nematic elastomers and gels are theoretically investigated with emphasis on the roles of non-local elastic interactions and crosslinking conditions. Networks originally crosslinked in the isotropic phase lose their long-range orientational order by the action of quenched random stresses, which we incorporate into the affine-deformation model of nematic rubber elasticity. We present a detailed picture of mechanical quasi-Goldstone modes, which accounts for an almost completely soft polydomain-monodomain (P-M) transition under strain as well as a ``four-leaf clover'' pattern in depolarized light scattering intensity. Dynamical relaxation of the domain structure is studied using a simple model. The peak wavenumber of the structure factor obeys a power-law-type slow kinetics and goes to zero in true mechanical equilibrium. The effect of quenched disorder on director fluctuation in the monodomain state is analyzed. The random frozen contribution to the fluctuation amplitude dominates the thermal one, at long wavelengths and near the P-M transition threshold. We also study networks obtained by crosslinking polydomain nematic polymer melts. The memory of initial director configuration acts as correlated and strong quenched disorder, which renders the P-M transition non-soft. The spatial distribution of the elastic free energy is strongly dehomogenized by external strain, in contrast to the case of isotropically crosslinked networks.Comment: 19 pages, 15 EPS figure

    A molecular dynamics simulation of polymer crystallization from oriented amorphous state

    Full text link
    Molecular process of crystallization from an oriented amorphous state was reproduced by molecular dynamics simulation for a realistic polyethylene model. Initial oriented amorphous state was obtained by uniaxial drawing an isotropic glassy state at 100 K. By the temperature jump from 100 K to 330 K, there occurred the crystallization into the fiber structure, during the process of which we observed the developments of various order parameters. The real space image and its Fourier transform revealed that a hexagonally ordered domain was initially formed, and then highly ordered crystalline state with stacked lamellae developed after further adjustment of the relative heights of the chains along their axes.Comment: 4 pages, 3 figure

    Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys

    Full text link
    Dislocation velocities and mobilities are studied by Molecular Dynamics simulations for edge and screw dislocations in pure aluminum and nickel, and edge dislocations in Al-2.5%Mg and Al-5.0%Mg random substitutional alloys using EAM potentials. In the pure materials, the velocities of all dislocations are close to linear with the ratio of (applied stress)/(temperature) at low velocities, consistent with phonon drag models and quantitative agreement with experiment is obtained for the mobility in Al. At higher velocities, different behavior is observed. The edge dislocation velocity remains dependent solely on (applied stress)/(temperature) up to approximately 1.0 MPa/K, and approaches a plateau velocity that is lower than the smallest "forbidden" speed predicted by continuum models. In contrast, above a velocity around half of the smallest continuum wave speed, the screw dislocation damping has a contribution dependent solely on stress with a functional form close to that predicted by a radiation damping model of Eshelby. At the highest applied stresses, there are several regimes of nearly constant (transonic or supersonic) velocity separated by velocity gaps in the vicinity of forbidden velocities; various modes of dislocation disintegration and destabilization were also encountered in this regime. In the alloy systems, there is a temperature- and concentration-dependent pinning regime where the velocity drops sharply below the pure metal velocity. Above the pinning regime but at moderate stresses, the velocity is again linear in (applied stress)/(temperature) but with a lower mobility than in the pure metal.Comment: PDF, 30 pages including figures, submitted to Modelling Simul. Mater. Sci. En
    corecore