162 research outputs found

    Deuteronomy and Numbers

    Get PDF
    Four light isotopes - D, ^3He, ^4He and ^7Li - were produced by nuclear reactions a few seconds after the big bang. New measurements of ^3He in the ISM by Gloeckler and Geiss and of deuterium in high redshift hydrogen clouds by Tytler and his collaborators provide further confirmation of big-bang nucleosynthesis and new insight about the density of ordinary matter (baryons).Comment: 6 pages LaTeX with 1 eps Figur

    How Sensitive is the CMB to a Single Lens?

    Full text link
    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by LCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB.Comment: Accepted for publication in JCAP, 24 pages, 5 figure

    Consistency of the Shannon entropy in quantum experiments

    Full text link
    The consistency of the Shannon entropy, when applied to outcomes of quantum experiments, is analysed. It is shown that the Shannon entropy is fully consistent and its properties are never violated in quantum settings, but attention must be paid to logical and experimental contexts. This last remark is shown to apply regardless of the quantum or classical nature of the experiments.Comment: 12 pages, LaTeX2e/REVTeX4. V5: slightly different than the published versio

    On the Detection of a Scalar Stochastic Background of Gravitational Waves

    Get PDF
    In the near future we will witness the coming to a full operational regime of laser interferometers and resonant mass detectors of spherical shape. In this work we study the sensitivity of pairs of such gravitational wave detectors to a scalar stochastic background of gravitational waves. Our computations are carried out both for minimal and non minimal coupling of the scalar fields.Comment: 25 pages, 3 figure

    Scalar-Tensor Gravity and Quintessence

    Get PDF
    Scalar fields with inverse power-law effective potentials may provide a negative pressure component to the energy density of the universe today, as required by cosmological observations. In order to be cosmologically relevant today, the scalar field should have a mass mϕ=O(1033eV)m_\phi = O(10^{-33} {\mathrm eV}), thus potentially inducing sizable violations of the equivalence principle and space-time variations of the coupling constants. Scalar-tensor theories of gravity provide a framework for accommodating phenomenologically acceptable ultra-light scalar fields. We discuss non-minimally coupled scalar-tensor theories in which the scalar-matter coupling is a dynamical quantity. Two attractor mechanisms are operative at the same time: one towards the tracker solution, which accounts for the accelerated expansion of the Universe, and one towards general relativity, which makes the ultra-light scalar field phenomenologically safe today. As in usual tracker-field models, the late-time behavior is largely independent on the initial conditions. Strong distortions in the cosmic microwave background anisotropy spectra as well as in the matter power spectrum are expected.Comment: 5 pages, 4 figure

    Ellipsoidal universe in the brane world

    Full text link
    We study a scenario of the ellipsoidal universe in the brane world cosmology with a cosmological constant in the bulk . From the five-dimensional Einstein equations we derive the evolution equations for the eccentricity and the scale factor of the universe, which are coupled to each other. It is found that if the anisotropy of our universe is originated from a uniform magnetic field inside the brane, the eccentricity decays faster in the bulk in comparison with a four-dimensional ellipsoidal universe. We also investigate the ellipsoidal universe in the brane-induced gravity and find the evolution equation for the eccentricity which has a contribution determined by the four- and five-dimensional Newton's constants. The role of the eccentricity is discussed in explaining the quadrupole problem of the cosmic microwave background.Comment: 15 pages, 1 figure, Version 3, references added, contents expande

    Cosmic Acceleration Driven by Mirage Inhomogeneities

    Full text link
    A cosmological model based on an inhomogeneous D3-brane moving in an AdS_5 X S_5 bulk is introduced. Although there is no special points in the bulk, the brane Universe has a center and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the center, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early time acceleration, it is shown that the early stage accelerating phase ends in a dust dominated FRW homogeneous Universe. Mirage-driven acceleration thus provides a dark matter component for the brane Universe final state. We finally show that the model fulfills the current constraints on inhomogeneities.Comment: 14 pages, 1 figure, IOP style. v2, changed style, minor corrections, references added, version accepted in Class. Quant. Gra

    Could dark energy be vector-like?

    Get PDF
    In this paper I explore whether a vector field can be the origin of the present stage of cosmic acceleration. In order to avoid violations of isotropy, the vector has be part of a ``cosmic triad'', that is, a set of three identical vectors pointing in mutually orthogonal spatial directions. A triad is indeed able to drive a stage of late accelerated expansion in the universe, and there exist tracking attractors that render cosmic evolution insensitive to initial conditions. However, as in most other models, the onset of cosmic acceleration is determined by a parameter that has to be tuned to reproduce current observations. The triad equation of state can be sufficiently close to minus one today, and for tachyonic models it might be even less than that. I briefly analyze linear cosmological perturbation theory in the presence of a triad. It turns out that the existence of non-vanishing spatial vectors invalidates the decomposition theorem, i.e. scalar, vector and tensor perturbations do not decouple from each other. In a simplified case it is possible to analytically study the stability of the triad along the different cosmological attractors. The triad is classically stable during inflation, radiation and matter domination, but it is unstable during (late-time) cosmic acceleration. I argue that this instability is not likely to have a significant impact at present.Comment: 28 pages, 6 figures. Uses RevTeX4. v2: Discussion about relation to phantoms added and additional references cite

    Limits on Neutrino Mass from Cosmic Structure Formation

    Get PDF
    We consider the effect of three species of neutrinos with nearly degenerate mass on the cosmic structure formation in a low matter-density universe within a hierarchical clustering scenario with a flat initial perturbation spectrum. The matching condition for fluctuation powers at the COBE scale and at the cluster scale leads to a strong upper limit on neutrino mass. For a flat universe with matter density parameter Omega=0.3, we obtain m_nu<0.6eV for the Hubble constant H_0<80km/s/Mpc. Allowing for the more generous parameter space limited by Omega11.5Gyr, the limit is 0.9eV.Comment: 4 pages with 2 figure
    corecore