315 research outputs found
Measuring the relativistic perigee advance with Satellite Laser Ranging
One of the most famous classical tests of General Relativity is the
gravitoelectric secular advance of the pericenter of a test body in the
gravitational field of a central mass. In this paper we explore the possibility
of performing a measurement of the gravitoelectric pericenter advance in the
gravitational field of the Earth by analyzing the laser-ranged data to some
existing, or proposed, laser-ranged geodetic satellites. At the present level
of knowledge of various error sources, the relative precision obtainable with
the data from LAGEOS and LAGEOS II, suitably combined, is of the order of
. Nevertheless, these accuracies could sensibly be improved in the
near future when the new data on the terrestrial gravitational field from the
CHAMP and GRACE missions will be available. The use of the perigee of LARES
(LAser RElativity Satellite), in the context of a suitable combination of
orbital residuals including also LAGEOS II, should further raise the precision
of the measurement. As a secondary outcome of the proposed experiment, with the
so obtained value of \ppn and with \et=4\beta-\gamma-3 from Lunar Laser
Ranging it could be possible to obtain an estimate of the PPN parameters
and at the level.Comment: LaTex2e, 14 pages, no figures, 2 tables. To appear in Classical and
Quantum Gravit
On a new observable for measuring the Lense-Thirring effect with Satellite Laser Ranging
In this paper we present a rather extensive error budget for the difference
of the perigees of a pair of supplementary SLR satellites aimed to the
detection of the Lense-Thirring effect.Comment: LaTex2e, 14 pages, 1 table, no figures. Some changes and additions to
the abstract, Introduction and Conclusions. References updated, typos
corrected. Equation corrected. To appear in General Relativity and
Gravitatio
Finally, results from Gravity Probe-B
Nearly fifty years after its inception, the Gravity Probe B satellite mission
delivers the first measurements of how a spinning gyroscope precesses in the
gravitational warping of spacetime.Comment: A Viewpoint article, published in Physics 4, 43 (2011), available at
http://physics.aps.org/articles/v4/43 Submitted to the arXiv by permission of
the American Physical Societ
LAGEOS-type Satellites in Critical Supplementary Orbit Configuration and the Lense-Thirring Effect Detection
In this paper we analyze quantitatively the concept of LAGEOS--type
satellites in critical supplementary orbit configuration (CSOC) which has
proven capable of yielding various observables for many tests of General
Relativity in the terrestrial gravitational field, with particular emphasis on
the measurement of the Lense--Thirring effect.Comment: LaTex2e, 20 pages, 7 Tables, 6 Figures. Changes in Introduction,
Conclusions, reference added, accepted for publication in Classical and
Quantum Gravit
A critical approach to the concept of a polar, low-altitude LARES satellite
According to very recent developments of the LARES mission, which would be
devoted to the measurement of the general relativistic Lense--Thirring effect
in the gravitational field of the Earth with Satellite Laser Ranging, it seems
that the LARES satellite might be finally launched in a polar, low--altitude
orbit by means of a relatively low--cost rocket. The observable would be the
node only. In this letter we critically analyze this scenario.Comment: LaTex2e, 11 pages, 4 figures, 1 table. Accepted for publication in
Classical and Quantum Gravit
Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test
We deal with the test of the general relativistic gravitomagnetic
Lense-Thirring effect currently ongoing in the Earth's gravitational field with
the combined nodes \Omega of the laser-ranged geodetic satellites LAGEOS and
LAGEOS II.
One of the most important source of systematic uncertainty on the orbits of
the LAGEOS satellites, with respect to the Lense-Thirring signature, is the
bias due to the even zonal harmonic coefficients J_L of the multipolar
expansion of the Earth's geopotential which account for the departures from
sphericity of the terrestrial gravitational potential induced by the
centrifugal effects of its diurnal rotation. The issue addressed here is: are
the so far published evaluations of such a systematic error reliable and
realistic? The answer is negative. Indeed, if the difference \Delta J_L among
the even zonals estimated in different global solutions (EIGEN-GRACE02S,
EIGEN-CG03C, GGM02S, GGM03S, ITG-Grace02, ITG-Grace03s, JEM01-RL03B, EGM2008,
AIUB-GRACE01S) is assumed for the uncertainties \delta J_L instead of using
their more or less calibrated covariance sigmas \sigma_{J_L}, it turns out that
the systematic error \delta\mu in the Lense-Thirring measurement is about 3 to
4 times larger than in the evaluations so far published based on the use of the
sigmas of one model at a time separately, amounting up to 37% for the pair
EIGEN-GRACE02S/ITG-Grace03s. The comparison among the other recent GRACE-based
models yields bias as large as about 25-30%. The major discrepancies still
occur for J_4, J_6 and J_8, which are just the zonals the combined
LAGEOS/LAGOES II nodes are most sensitive to.Comment: LaTex, 12 pages, 12 tables, no figures, 64 references. To appear in
Central European Journal of Physics (CEJP
On the possibility of measuring the Earth's gravitomagnetic force in a new laboratory experiment
In this paper we propose, in a preliminary way, a new Earth-based laboratory
experiment aimed to the detection of the gravitomagnetic field of the Earth. It
consists of the measurement of the difference of the circular frequencies of
two rotators moving along identical circular paths, but in opposite directions,
on a horizontal friction-free plane in a vacuum chamber placed at South Pole.
The accuracy of our knowledge of the Earth's rotation from VLBI and the
possibility of measuring the rotators'periods over many revolutions should
allow for the feasibility of the proposed experiment.Comment: Latex2e, 8 pages, no figures, no tables, accepted for publication by
Classical and Quantum Gravity. Typo corrected in the formula of the error in
the difference of the orbital period
LARES/WEBER-SAT and the equivalence principle
It has often been claimed that the proposed Earth artificial satellite
LARES/WEBER-SAT-whose primary goal is, in fact, the measurement of the general
relativistic Lense-Thirring effect at a some percent level-would allow to
greatly improve, among (many) other things, the present-day (10^-13) level of
accuracy in testing the equivalence principle as well. Recent claims point
towards even two orders of magnitude better, i.e. 10^-15. In this note we show
that such a goal is, in fact, unattainable by many orders of magnitude being,
instead, the achievable level of the order of 10^-9.Comment: LaTex, 4 pages, no figures, no tables, 26 references. Proofs
corrections included. To appear in EPL (Europhysics Letters
Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime
We study the motion of test particles and electromagnetic waves in the
Kerr-Newman-Taub-NUT spacetime in order to elucidate some of the effects
associated with the gravitomagnetic monopole moment of the source. In
particular, we determine in the linear approximation the contribution of this
monopole to the gravitational time delay and the rotation of the plane of the
polarization of electromagnetic waves. Moreover, we consider "spherical" orbits
of uncharged test particles in the Kerr-Taub-NUT spacetime and discuss the
modification of the Wilkins orbits due to the presence of the gravitomagnetic
monopole.Comment: 12 pages LaTeX iopart style, uses PicTex for 1 Figur
- …