116 research outputs found

    Computational Difficulty of Global Variations in the Density Matrix Renormalization Group

    Full text link
    The density matrix renormalization group (DMRG) approach is arguably the most successful method to numerically find ground states of quantum spin chains. It amounts to iteratively locally optimizing matrix-product states, aiming at better and better approximating the true ground state. To date, both a proof of convergence to the globally best approximation and an assessment of its complexity are lacking. Here we establish a result on the computational complexity of an approximation with matrix-product states: The surprising result is that when one globally optimizes over several sites of local Hamiltonians, avoiding local optima, one encounters in the worst case a computationally difficult NP-hard problem (hard even in approximation). The proof exploits a novel way of relating it to binary quadratic programming. We discuss intriguing ramifications on the difficulty of describing quantum many-body systems.Comment: 5 pages, 1 figure, RevTeX, final versio

    Resonant Tunneling in a Dissipative Environment

    Full text link
    We measure tunneling through a single quantum level in a carbon nanotube quantum dot connected to resistive metal leads. For the electrons tunneling to/from the nanotube, the leads serve as a dissipative environment, which suppresses the tunneling rate. In the regime of sequential tunneling, the height of the single-electron conductance peaks increases as the temperature is lowered, although it scales more weekly than the conventional 1/T. In the resonant tunneling regime (temperature smaller than the level width), the peak width approaches saturation, while the peak height starts to decrease. Overall, the peak height shows a non-monotonic temperature dependence. We associate this unusual behavior with the transition from the sequential to the resonant tunneling through a single quantum level in a dissipative environment.Comment: 5 pages, 5 figure

    Quantum Phase Transition in a Resonant Level Coupled to Interacting Leads

    Full text link
    An interacting one-dimensional electron system, the Luttinger liquid, is distinct from the "conventional" Fermi liquids formed by interacting electrons in two and three dimensions. Some of its most spectacular properties are revealed in the process of electron tunneling: as a function of the applied bias or temperature the tunneling current demonstrates a non-trivial power-law suppression. Here, we create a system which emulates tunneling in a Luttinger liquid, by controlling the interaction of the tunneling electron with its environment. We further replace a single tunneling barrier with a double-barrier resonant level structure and investigate resonant tunneling between Luttinger liquids. For the first time, we observe perfect transparency of the resonant level embedded in the interacting environment, while the width of the resonance tends to zero. We argue that this unique behavior results from many-body physics of interacting electrons and signals the presence of a quantum phase transition (QPT). In our samples many parameters, including the interaction strength, can be precisely controlled; thus, we have created an attractive model system for studying quantum critical phenomena in general. Our work therefore has broadly reaching implications for understanding QPTs in more complex systems, such as cold atoms and strongly correlated bulk materials.Comment: 11 pages total (main text + supplementary

    Evolutionary Games with Affine Fitness Functions: Applications to Cancer

    Full text link
    We analyze the dynamics of evolutionary games in which fitness is defined as an affine function of the expected payoff and a constant contribution. The resulting inhomogeneous replicator equation has an homogeneous equivalent with modified payoffs. The affine terms also influence the stochastic dynamics of a two-strategy Moran model of a finite population. We then apply the affine fitness function in a model for tumor-normal cell interactions to determine which are the most successful tumor strategies. In order to analyze the dynamics of concurrent strategies within a tumor population, we extend the model to a three-strategy game involving distinct tumor cell types as well as normal cells. In this model, interaction with normal cells, in combination with an increased constant fitness, is the most effective way of establishing a population of tumor cells in normal tissue.Comment: The final publication is available at http://www.springerlink.com, http://dx.doi.org/10.1007/s13235-011-0029-
    • …
    corecore