18 research outputs found

    A Multispectral Backscattered Light Recorder of Insects’ Wingbeats

    Get PDF
    Most reported optical recorders of the wingbeat of insects are based on the so-called extinction light, which is the variation of light in the receiver due to the cast shadow of the insect\u2019s wings and main body. In this type of recording devices, the emitter uses light and is placed opposite to the receiver, which is usually a single (or multiple) photodiode. In this work, we present a different kind of wingbeat sensor and its associated recorder that aims to extract a deeper representational signal of the wingbeat event and color characterization of the main body of the insect, namely: a) we record the backscattered light that is richer in harmonics than the extinction light, b) we use three different spectral bands, i.e., a multispectral approach that aims to grasp the melanization and microstructural and color features of the wing and body of the insects, and c) we average at the receiver\u2019s level the backscattered signal from many LEDs that illuminate the wingbeating insect from multiple orientations and thus offer a smoother and more complete signal than one based on a single snapshot. We present all the necessary details to reproduce the device and we analyze many insects of interest like the bee Apis mellifera, the wasp Polistes gallicus, and some insects whose wingbeating characteristics are pending in the current literature, like Drosophila suzukii and Zaprionus, another member of the drosophilidae family

    Introduction of the transposable element Minos into the germline of Drosophila melanogaster.

    No full text
    A transposon based on the transposable element Minos from Drosophila hydei was introduced into the genome of Drosophila melanogaster using transformation mediated by the Minos transposase. The transposon carries a wild-type version of the white gene (w) of Drosophila inserted into the second exon of Minos. Transformation was obtained by injecting the transposon into preblastoderm embryos that were expressing transposase either from a Hsp70-Minos fusion inserted into the genome via P-element-mediated transformation or from a coinjected plasmid carrying the Hsp70-Minos fusion. Between 1% and 6% of the fertile injected individuals gave transformed progeny. Four of the insertions were cloned and the DNA sequences flanking the transposon ends were determined. The "empty" sites corresponding to three of the insertions were amplified from the recipient strain by PCR, cloned, and sequenced. In all cases, the transposon has inserted into a TA dinucleotide and has created the characteristic TA target site duplication. In the absence of transposase, the insertions were stable in the soma and the germ line. However, in the presence of the Hsp70-Minos gene the Minos-w transposon excises, resulting in mosaic eyes and germ-line reversion to the white phenotype. Minos could be utilized as an alternative to existing systems for transposon tagging and enhancer trapping in Drosophila; it might also be of use as a germ-line transformation vector for non-Drosophila insects

    Introduction of the transposable element Minos into the germ line of Drosophila melanogaster.

    No full text
    A transposon based on the transposable element Minos from Drosophila hydei was introduced into the genome of Drosophila melanogaster using transformation mediated by the Minos transposase. The transposon carries a wild-type version of the white gene (w) of Drosophila inserted into the second exon of Minos. Transformation was obtained by injecting the transposon into preblastoderm embryos that were expressing transposase either from a Hsp70-Minos fusion inserted into the genome via P-element-mediated transformation or from a coinjected plasmid carrying the Hsp70-Minos fusion. Between 1% and 6% of the fertile injected individuals gave transformed progeny. Four of the insertions were cloned and the DNA sequences flanking the transposon ends were determined. The "empty" sites corresponding to three of the insertions were amplified from the recipient strain by PCR, cloned, and sequenced. In all cases, the transposon has inserted into a TA dinucleotide and has created the characteristic TA target site duplication. In the absence of transposase, the insertions were stable in the soma and the germ line. However, in the presence of the Hsp70-Minos gene the Minos-w transposon excises, resulting in mosaic eyes and germ-line reversion to the white phenotype. Minos could be utilized as an alternative to existing systems for transposon tagging and enhancer trapping in Drosophila; it might also be of use as a germ-line transformation vector for non-Drosophila insects

    Gene transfer into the Medfly, Ceratitis capitata, with a Drosophila hydei transposable element.

    No full text
    Exogenous functional DNA was introduced into the germline chromosomes of the Mediterranean fruit fly (medfly) Ceratitis capitata with a germline transformation system based on the transposable element Minos from Drosophila hydei. Transformants were identified as phenotypic revertants of a white-eyed mutation carried by the recipient strain. Clusters of transformants were detected among the progeny of 390 individuals screened for germline transformation. Five independent and phenotypically active integration events were identified, in each of which a single copy of the transposon was inserted into a different site of the medfly genome. Molecular analysis indicates that they represent transposase-mediated insertions of the transposon into medfly chromosomes

    Introduction of the transposable element Minos into the germ line of Drosophila melanogaster.

    No full text
    A transposon based on the transposable element Minos from Drosophila hydei was introduced into the genome of Drosophila melanogaster using transformation mediated by the Minos transposase. The transposon carries a wild-type version of the white gene (w) of Drosophila inserted into the second exon of Minos. Transformation was obtained by injecting the transposon into preblastoderm embryos that were expressing transposase either from a Hsp70-Minos fusion inserted into the genome via P-element-mediated transformation or from a coinjected plasmid carrying the Hsp70-Minos fusion. Between 1% and 6% of the fertile injected individuals gave transformed progeny. Four of the insertions were cloned and the DNA sequences flanking the transposon ends were determined. The "empty" sites corresponding to three of the insertions were amplified from the recipient strain by PCR, cloned, and sequenced. In all cases, the transposon has inserted into a TA dinucleotide and has created the characteristic TA target site duplication. In the absence of transposase, the insertions were stable in the soma and the germ line. However, in the presence of the Hsp70-Minos gene the Minos-w transposon excises, resulting in mosaic eyes and germ-line reversion to the white phenotype. Minos could be utilized as an alternative to existing systems for transposon tagging and enhancer trapping in Drosophila; it might also be of use as a germ-line transformation vector for non-Drosophila insects

    Medfly-Wolbachia symbiosis: Genotype x genotype interactions determine host's life history traits under mass rearing conditions

    No full text
    Background: Wolbachia pipientis is a widespread, obligatory intracellular and maternally inherited bacterium, that induces a wide range of reproductive alterations to its hosts. Cytoplasmic Incompatibility (CI) is causing embryonic lethality, the most common of them. Despite that Wolbachia-borne sterility has been proposed as an environmental friendly pest control method (Incompatible Insect Technique, IIT) since 1970s, the fact that Wolbachia modifies important fitness components of its hosts sets severe barriers to IIT implementation. Mass rearing of Mediterranean fruit fly, Ceratitis capitata (medfly), is highly optimized given that this pest is a model species regarding the implementation of another sterility based pest control method, the Sterile Insect Technique (SIT). We used the medfly-Wolbachia symbiotic association, as a model system, to study the effect of two different Wolbachia strains, on the life history traits of 2 C. capitata lines with different genomic background. Results: Wolbachia effects are regulated by both C. capitata genetic background and the Wolbachia strain. Wolbachia infection reduces fertility rates in both C. capitata genetic backgrounds and shortens the pre-pupa developmental duration in the GSS strain. On the other hand, regardless of the strain of Wolbachia (wCer2, wCer4) infection does not affect either the sex ratio or the longevity of adults. wCer4 infection imposed a reduction in females' fecundity but wCer2 did not. Male mating competitiveness, adults flight ability and longevity under water and food deprivation were affected by both the genetic background of medfly and the strain of Wolbachia (genotype by genotype interaction). Conclusion: Wolbachia infection could alter important life history traits of mass-reared C. capitata lines and therefore the response of each genotype on the Wolbachia infection should be considered toward ensuring the productivity of the Wolbachia-infected insects under mass-rearing conditions. © 2019 The Author(s)
    corecore