2,469 research outputs found
Effect of a thin AlO_x layer on transition-edge sensor properties
We have studied the physics of transition-edge sensor (TES) devices with an
insulating AlOx layer on top of the device to allow implementation of more
complex detector geometries. By comparing devices with and without the
insulating film, we have observed significant additional noise apparently
caused by the insulator layer. In addition, AlOx was found to be a relatively
good thermal conductor. This adds an unforeseen internal thermal feature to the
system.Comment: 6 pages, 5 figures, Low Temperature Detectors 14 conferenc
Instability of insulating states in optical lattices due to collective phonon excitations
The role of collective phonon excitations on the properties of cold atoms in
optical lattices is investigated. These phonon excitations are collective
excitations, whose appearance is caused by intersite atomic interactions
correlating the atoms, and they do not arise without such interactions. These
collective excitations should not be confused with lattice vibrations produced
by an external force. No such a force is assumed. But the considered phonons
are purely self-organized collective excitations, characterizing atomic
oscillations around lattice sites, due to intersite atomic interactions. It is
shown that these excitations can essentially influence the possibility of atoms
to be localized. The states that would be insulating in the absence of phonon
excitations can become delocalized when these excitations are taken into
account. This concerns long-range as well as local atomic interactions. To
characterize the region of stability, the Lindemann criterion is used.Comment: Latex file, 27 pages, 1 figur
Density functional theory of vortex lattice melting in layered superconductors: a mean-field--substrate approach
We study the melting of the pancake vortex lattice in a layered
superconductor in the limit of vanishing Josephson coupling. Our approach
combines the methodology of a recently proposed mean-field substrate model for
such systems with the classical density functional theory of freezing. We
derive a free-energy functional in terms of a scalar order-parameter profile
and use it to derive a simple formula describing the temperature dependence of
the melting field. Our theoretical predictions are in good agreement with
simulation data. The theoretical framework proposed is thermodynamically
consistent and thus capable of describing the negative magnetization jump
obtained in experiments. Such consistency is demonstrated by showing the
equivalence of our expression for the density discontinuity at the transition
with the corresponding Clausius-Clapeyron relation.Comment: 11 pages, 4 figure
Analysis of Dislocation Mechanism for Melting of Elements: Pressure Dependence
In the framework of melting as a dislocation-mediated phase transition we
derive an equation for the pressure dependence of the melting temperatures of
the elements valid up to pressures of order their ambient bulk moduli. Melting
curves are calculated for Al, Mg, Ni, Pb, the iron group (Fe, Ru, Os), the
chromium group (Cr, Mo, W), the copper group (Cu, Ag, Au), noble gases (Ne, Ar,
Kr, Xe, Rn), and six actinides (Am, Cm, Np, Pa, Th, U). These calculated
melting curves are in good agreement with existing data. We also discuss the
apparent equivalence of our melting relation and the Lindemann criterion, and
the lack of the rigorous proof of their equivalence. We show that the would-be
mathematical equivalence of both formulas must manifest itself in a new
relation between the Gr\"{u}neisen constant, bulk and shear moduli, and the
pressure derivative of the shear modulus.Comment: 19 pages, LaTeX, 9 eps figure
Effects of inclusion of spray-dried porcine plasma in lactation diets on sow and litter performance.
Self-organized Beating and Swimming of Internally Driven Filaments
We study a simple two-dimensional model for motion of an elastic filament
subject to internally generated stresses and show that wave-like propagating
shapes which can propel the filament can be induced by a self-organized
mechanism via a dynamic instability. The resulting patterns of motion do not
depend on the microscopic mechanism of the instability but only of the filament
rigidity and hydrodynamic friction. Our results suggest that simplified
systems, consisting only of molecular motors and filaments could be able to
show beating motion and self-propulsion.Comment: 8 pages, 2 figures, REVTe
Freezing transition of the vortex liquid in anisotropic superconductors
We study the solid-liquid transition of a model of pancake vortices in
laminar superconductors using a density functional theory of freezing. The
physical properties of the system along the melting line are discussed in
detail. We show that there is a very good agreement with experimental data in
the shape and position of the first order transition in the phase diagram and
in the magnitude and temperature dependence of the magnetic induction jump at
the transition. We analyze the validity of the Lindemann melting criterion and
the Hansen-Verlet freezing criterion. Both criteria are shown to be good to
predict the phase diagram in the region where a first order phase transition is
experimentally observed.Comment: 9 pages, 10 figure
Complete devil's staircase and crystal--superfluid transitions in a dipolar XXZ spin chain: A trapped ion quantum simulation
Systems with long-range interactions show a variety of intriguing properties:
they typically accommodate many meta-stable states, they can give rise to
spontaneous formation of supersolids, and they can lead to counterintuitive
thermodynamic behavior. However, the increased complexity that comes with
long-range interactions strongly hinders theoretical studies. This makes a
quantum simulator for long-range models highly desirable. Here, we show that a
chain of trapped ions can be used to quantum simulate a one-dimensional model
of hard-core bosons with dipolar off-site interaction and tunneling, equivalent
to a dipolar XXZ spin-1/2 chain. We explore the rich phase diagram of this
model in detail, employing perturbative mean-field theory, exact
diagonalization, and quasiexact numerical techniques (density-matrix
renormalization group and infinite time evolving block decimation). We find
that the complete devil's staircase -- an infinite sequence of crystal states
existing at vanishing tunneling -- spreads to a succession of lobes similar to
the Mott-lobes found in Bose--Hubbard models. Investigating the melting of
these crystal states at increased tunneling, we do not find (contrary to
similar two-dimensional models) clear indications of supersolid behavior in the
region around the melting transition. However, we find that inside the
insulating lobes there are quasi-long range (algebraic) correlations, opposed
to models with nearest-neighbor tunneling which show exponential decay of
correlations
- …
