51 research outputs found

    Trap States Ruling Photoconductive Gain in Tissue-Equivalent, Printed Organic X-Ray Detectors

    Get PDF
    Organic semiconductors are excellent candidates for X-ray detectors that can adapt to new applications, with unique properties including mechanical flexibility and the ability to cover large surfaces. Their chemical composition, primarily carbon and hydrogen, makes them human tissue equivalent in terms of radiation absorption. This is a highly desirable property for a radiation dosimeter to be employed in medical diagnostics and therapy, however a low-Z composition limits the absorption of ionizing radiation. The detection efficiency can be enhanced by considering the photoconductive gain (PG) effect, a significant contributor to the ionizing radiation detection mechanism in this class of materials. In this work, a process of controlled solution deposition by nozzle printing and crystallization of an organic semiconductor thin film is demonstrated whereby a flexible, arrayed thin-film X-ray detector with record X-ray sensitivities among flexible radiation detectors (S = (9.0 +/- 0.4) x 10(7) mu C Gy(-1) cm(-3)) is developed. The excitonic peaks responsible for the activation of the PG effect are investigated and identified using a novel technique called photocurrent spectroscopy optical quenching, and the analysis of the changes in trap states is further demonstrated

    Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout

    Full text link
    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the MHz range. The strong dependence of the resonant frequency on applied gate voltage can be fit to a membrane model, which yields the mass density and built-in strain. Upon removal and addition of mass, we observe changes in both the density and the strain, indicating that adsorbates impart tension to the graphene. Upon cooling, the frequency increases; the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, these studies lay the groundwork for applications, including high-sensitivity mass detectors

    An Organic Active-Matrix Imager

    No full text

    Effect of conductive filaments on the electron emission properties in cathodes

    Get PDF

    In situ study of pentacene interaction with archetypal hybrid contacts: Fluorinated versus alkane thiols on gold

    No full text
    One approach developed to improve the performance of bottom contact source/drain electrodes is to treat the contacts with thiols before deposition of the semiconductor. There is evidence indicating that improvement is due to both morphological effects and improved work function matching. Especially suggestive evidence shows that thiols that increase the effective work function of the contacts (e.g., fluorinated thiols) yield better device performance than work function decreasing thiols (e.g., alkane thiols). Here, we compare two technologically relevant thiol treatments, an alkane thiol (1-hexadecanethiol), and a fluorinated thiol (pentafluorobenzenethiol), in pentacene organic field effect transistors. Using in situ semiconductor deposition, x-ray photo-emission, and x-ray absorption spectroscopy, we are able to directly observe the interaction between the semiconductor and the thiol-treated gold layers. Our spectroscopic analysis suggests that there is not a site-specific chemical reaction between the pentacene and the thiol molecules. A homogeneous standing-up pentacene orientation was observed in both treated substrates, consistent with the morphological improvement expected from thiol treatment in both samples. Our study shows that both the highest occupied molecular orbital-Fermi level offset and C 1s binding energy are shifted in the two thiol systems, which can be explained by varied dipole direction within the two thiols, causing a change in surface potential. The additional improvement of the electrical performance in the pentafluorobenzenethiol case is originated by a reduced hole injection barrier that is also associated with an increase in the density of states in the lowest unoccupied molecular orbital
    corecore