13 research outputs found

    Tunneling images of a 2D electron system in a quantizing magnetic field

    Full text link
    We have applied a scanning probe method, Subsurface Charge Accumulation (SCA) imaging, to resolve the local structure of the interior of a semiconductor two-dimensional electron system (2DES) in a tunneling geometry. Near magnetic fields corresponding to integer Landau level filling, submicron scale spatial structure in the out-of-phase component of the tunneling signal becomes visible. In the images presented here, the structure repeats itself when the filling factor is changed from nu=6 to nu=7. Therefore, we believe the images reflect small modulations in the 2DES density caused by the disorder in the sample.Comment: 2 pages, 2 color figures, submitted to LT23 proceeding

    Modeling single- and multiple-electron resonances for electric-field-sensitive scanning probes

    Full text link
    We have developed a modeling method suitable to analyze single- and multiple-electron resonances detected by electric-field-sensitive scanning probe techniques. The method is based on basic electrostatics and a numerical boundary-element approach. The results compare well to approximate analytical expressions and experimental data.Comment: 10 pages, 4 figure

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Direct observation of micron-scale ordered structure in a two-dimensional electron system

    Full text link
    We have applied a novel scanned probe method to directly resolve the interior structure of a GaAs/AlGaAs two-dimensional electron system in a tunneling geometry. We find that the application of a perpendicular magnetic field can induce surprising density modulations that are not static as a function of the field. Near six and four filled Landau levels, stripe-like structures emerge with a characteristic wave length ~2 microns. Present theories do not account for ordered density modulations on this length scale.Comment: 5 pages, 4 figures. To appear in Phys. Rev.

    Trionic Optical Potential for Electrons in Semiconductors

    Full text link
    Laser-induced optical potentials for atoms have led to remarkable advances in precision measurement, quantum information, and towards addressing fundamental questions in condensed matter physics. Here, we describe analogous optical potentials for electrons in quantum wells and wires that can be generated by optically driving the transition between a single electron and a three-body electron-exciton bound state, known as a trion. The existence of a bound trion state adds a term to the ac Stark shift of the material proportional to the light intensity at the position of the electron. According to our theoretical calculations, this shift can be large relative to the thermal equilibrium temperature of the electron, resulting in a relatively strong optical potential that could be used to trap, guide, and manipulate individual electrons within a semiconductor quantum well or wire. These potentials can be thought of as artificial nano-structures on the scale of 100 nm that can be spin-dependent and reconfigurable in real-time. Our results suggest the possibility of integrating ultrafast optics and gate voltages in new resolved-carrier semiconductor opto-electronic devices, with potential applications in fields such as nano-electronics, spintronics, and quantum information processingComment: Article and Supplemental Materials; This is a preprint of the original submission to Nature Physic

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    No full text
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a ‘very high risk’ of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate ‘rapid’ management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement
    corecore