24 research outputs found

    Pair of null gravitating shells III. Algebra of Dirac's observables

    Full text link
    The study of the two-shell system started in ``Pair of null gravitating shells I and II'' (gr-qc/0112060--061) is continued. The pull back of the Liouville form to the constraint surface, which contains complete information about the Poisson brackets of Dirac observables, is computed in the singular double-null Eddington-Finkelstein (DNEF) gauge. The resulting formula shows that the variables conjugate to the Schwarzschild masses of the intershell spacetimes are simple combinations of the values of the DNEF coordinates on these spacetimes at the shells. The formula is valid for any number of in- and out-going shells. After applying it to the two-shell system, the symplectic form is calculated for each component of the physical phase space; regular coordinates are found, defining it as a symplectic manifold. The symplectic transformation between the initial and final values of observables for the shell-crossing case is written down.Comment: 26 pages, Latex file using amstex, some references correcte

    Pair of null gravitating shells II. Canonical theory and embedding variables

    Get PDF
    The study of the two shell system started in our first paper ``Pair of null gravitating shells I'' (gr-qc/0112060) is continued. An action functional for a single shell due to Louko, Whiting and Friedman is generalized to give appropriate equations of motion for two and, in fact, any number of spherically symmetric null shells, including the cases when the shells intersect. In order to find the symplectic structure for the space of solutions described in paper I, the pull back to the constraint surface of the Liouville form determined by the action is transformed into new variables. They consist of Dirac observables, embeddings and embedding momenta (the so-called Kucha\v{r} decomposition). The calculation includes the integration of a set of coupled partial differential equations. A general method of solving the equations is worked out.Comment: 20 pages, Latex file using amstex, some references correcte

    Gravitational Constraint Combinations Generate a Lie Algebra

    Get PDF
    We find a first--order partial differential equation whose solutions are all ultralocal scalar combinations of gravitational constraints with Abelian Poisson brackets between themselves. This is a generalisation of the Kucha\v{r} idea of finding alternative constraints for canonical gravity. The new scalars may be used in place of the hamiltonian constraint of general relativity and, together with the usual momentum constraints, replace the Dirac algebra for pure gravity with a true Lie algebra: the semidirect product of the Abelian algebra of the new constraint combinations with the algebra of spatial diffeomorphisms.Comment: 10 pages, latex, submitted to Classical and Quantum Gravity. Section 3 is expanded and an additional solution provided, minor errors correcte

    Pair of null gravitating shells I. Space of solutions and its symmetries

    Full text link
    The dynamical system constituted by two spherically symmetric thin shells and their own gravitational field is studied. The shells can be distinguished from each other, and they can intersect. At each intersection, they exchange energy on the Dray, 't Hooft and Redmount formula. There are bound states: if the shells intersect, one, or both, external shells can be bound in the field of internal shells. The space of all solutions to classical dynamical equations has six components; each has the trivial topology but a non trivial boundary. Points within each component are labeled by four parameters. Three of the parameters determine the geometry of the corresponding solution spacetime and shell trajectories and the fourth describes the position of the system with respect to an observer frame. An account of symmetries associated with spacetime diffeomorphisms is given. The group is generated by an infinitesimal time shift, an infinitesimal dilatation and a time reversal.Comment: 28 pages, 9 figure included in the text, Latex file using amstex, epic and graphi

    Action functionals of single scalar fields and arbitrary--weight gravitational constraints that generate a genuine Lie algebra

    Get PDF
    We discuss the issue initiated by Kucha\v{r} {\it et al}, of replacing the usual Hamiltonian constraint by alternative combinations of the gravitational constraints (scalar densities of arbitrary weight), whose Poisson brackets strongly vanish and cast the standard constraint-system for vacuum gravity into a form that generates a true Lie algebra. It is shown that any such combination---that satisfies certain reality conditions---may be derived from an action principle involving a single scalar field and a single Lagrange multiplier with a non--derivative coupling to gravity.Comment: 26 pages, plain TE

    Covariance and Time Regained in Canonical General Relativity

    Full text link
    Canonical vacuum gravity is expressed in generally-covariant form in order that spacetime diffeomorphisms be represented within its equal-time phase space. In accordance with the principle of general covariance, the time mapping {\T}: {\yman} \to {\rman} and the space mapping {\X}: {\yman} \to {\xman} that define the Dirac-ADM foliation are incorporated into the framework of the Hilbert variational principle. The resulting canonical action encompasses all individual Dirac-ADM actions, corresponding to different choices of foliating vacuum spacetimes by spacelike hypersurfaces. In this framework, spacetime observables, namely, dynamical variables that are invariant under spacetime diffeomorphisms, are not necessarily invariant under the deformations of the mappings \T and \X, nor are they constants of the motion. Dirac observables form only a subset of spacetime observables that are invariant under the transformations of \T and \X and do not evolve in time. The conventional interpretation of the canonical theory, due to Bergmann and Dirac, can be recovered only by postulating that the transformations of the reference system ({\T},{\X}) have no measurable consequences. If this postulate is not deemed necessary, covariant canonical gravity admits no classical problem of time.Comment: 41 pages, no figure

    Diffeomorphisms as Symplectomorphisms in History Phase Space: Bosonic String Model

    Get PDF
    The structure of the history phase space G\cal G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G\cal G includes the time map T\sf T from the spacetime manifold (the two-sheet) Y\cal Y to a one-dimensional time manifold T\cal T as one of its configuration variables. A canonical history action is posited on G\cal G such that its restriction to the configuration history space yields the familiar Polyakov action. The standard Dirac-ADM action is shown to be identical with the canonical history action, the only difference being that the underlying action is expressed in two different coordinate charts on G\cal G. The canonical history action encompasses all individual Dirac-ADM actions corresponding to different choices T\sf T of foliating Y\cal Y. The history Poisson brackets of spacetime fields on G\cal G induce the ordinary Poisson brackets of spatial fields in the instantaneous phase space G0{\cal G}_{0} of the Dirac-ADM formalism. The canonical history action is manifestly invariant both under spacetime diffeomorphisms DiffY\cal Y and temporal diffeomorphisms DiffT\cal T. Both of these diffeomorphisms are explicitly represented by symplectomorphisms on the history phase space G\cal G. The resulting classical history phase space formalism is offered as a starting point for projection operator quantization and consistent histories interpretation of the bosonic string model.Comment: 45 pages, no figure
    corecore