366 research outputs found

    Quadratic Algebra Approach to Relativistic Quantum Smorodinsky-Winternitz Systems

    Full text link
    There exist a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude (SVPEM) and the Schrodinger equation. We obtain the relativistic energy spectrum for the four Smorodinsky-Winternitz systems from the quasi-Hamiltonian and the quadratic algebras obtained by Daskaloyannis in the non-relativistic context. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras may be applied to the quantum relativistic case. We also present the symmetry algebra of the Dirac equation for these four systems and show that the quadratic algebra obtained is equivalent to the one obtained from the quasi-Hamiltonian.Comment: 19 page

    Infinite families of superintegrable systems separable in subgroup coordinates

    Full text link
    A method is presented that makes it possible to embed a subgroup separable superintegrable system into an infinite family of systems that are integrable and exactly-solvable. It is shown that in two dimensional Euclidean or pseudo-Euclidean spaces the method also preserves superintegrability. Two infinite families of classical and quantum superintegrable systems are obtained in two-dimensional pseudo-Euclidean space whose classical trajectories and quantum eigenfunctions are investigated. In particular, the wave-functions are expressed in terms of Laguerre and generalized Bessel polynomials.Comment: 19 pages, 6 figure

    Path Integral Approach for Superintegrable Potentials on Spaces of Non-constant Curvature: II. Darboux Spaces DIII and DIV

    Get PDF
    This is the second paper on the path integral approach of superintegrable systems on Darboux spaces, spaces of non-constant curvature. We analyze in the spaces \DIII and \DIV five respectively four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order polynomial equation. We show that also the free motion in Darboux space of type III can contain bound states, provided the boundary conditions are appropriate. We state the energy spectrum and the wave-functions, respectively

    Third order superintegrable systems separating in polar coordinates

    Full text link
    A complete classification is presented of quantum and classical superintegrable systems in E2E_2 that allow the separation of variables in polar coordinates and admit an additional integral of motion of order three in the momentum. New quantum superintegrable systems are discovered for which the potential is expressed in terms of the sixth Painlev\'e transcendent or in terms of the Weierstrass elliptic function

    Superintegrability on sl(2)-coalgebra spaces

    Full text link
    We review a recently introduced set of N-dimensional quasi-maximally superintegrable Hamiltonian systems describing geodesic motions, that can be used to generate "dynamically" a large family of curved spaces. From an algebraic viewpoint, such spaces are obtained through kinetic energy Hamiltonians defined on either the sl(2) Poisson coalgebra or a quantum deformation of it. Certain potentials on these spaces and endowed with the same underlying coalgebra symmetry have been also introduced in such a way that the superintegrability properties of the full system are preserved. Several new N=2 examples of this construction are explicitly given, and specific Hamiltonians leading to spaces of non-constant curvature are emphasized.Comment: 12 pages. Based on the contribution presented at the "XII International Conference on Symmetry Methods in Physics", Yerevan (Armenia), July 2006. To appear in Physics of Atomic Nucle

    Superintegrable systems with spin and second-order integrals of motion

    Full text link
    We investigate a quantum nonrelativistic system describing the interaction of two particles with spin 1/2 and spin 0, respectively. We assume that the Hamiltonian is rotationally invariant and parity conserving and identify all such systems which allow additional integrals of motion that are second order matrix polynomials in the momenta. These integrals are assumed to be scalars, pseudoscalars, vectors or axial vectors. Among the superintegrable systems obtained, we mention a generalization of the Coulomb potential with scalar potential V0=αr+328r2V_0=\frac{\alpha}{r}+\frac{3\hbar^2}{8r^2} and spin orbital one V1=2r2V_1=\frac{\hbar}{2r^2}.Comment: 32 page

    Structure results for higher order symmetry algebras of 2D classical superintegrable systems

    Full text link
    Recently the authors and J.M. Kress presented a special function recurrence relation method to prove quantum superintegrability of an integrable 2D system that included explicit constructions of higher order symmetries and the structure relations for the closed algebra generated by these symmetries. We applied the method to 5 families of systems, each depending on a rational parameter k, including most notably the caged anisotropic oscillator, the Tremblay, Turbiner and Winternitz system and a deformed Kepler-Coulomb system. Here we work out the analogs of these constructions for all of the associated classical Hamiltonian systems, as well as for a family including the generic potential on the 2-sphere. We do not have a proof in every case that the generating symmetries are of lowest possible order, but we believe this to be so via an extension of our method.Comment: 23 page

    An infinite family of superintegrable Hamiltonians with reflection in the plane

    Full text link
    We introduce a new infinite class of superintegrable quantum systems in the plane. Their Hamiltonians involve reflection operators. The associated Schr\"odinger equations admit separation of variables in polar coordinates and are exactly solvable. The angular part of the wave function is expressed in terms of little -1 Jacobi polynomials. The spectra exhibit "accidental" degeneracies. The superintegrability of the model is proved using the recurrence relation approach. The (higher-order) constants of motion are constructed and the structure equations of the symmetry algebra obtained.Comment: 19 page

    Superintegrability on N-dimensional spaces of constant curvature from so(N+1) and its contractions

    Full text link
    The Lie-Poisson algebra so(N+1) and some of its contractions are used to construct a family of superintegrable Hamiltonians on the ND spherical, Euclidean, hyperbolic, Minkowskian and (anti-)de Sitter spaces. We firstly present a Hamiltonian which is a superposition of an arbitrary central potential with N arbitrary centrifugal terms. Such a system is quasi-maximally superintegrable since this is endowed with 2N-3 functionally independent constants of the motion (plus the Hamiltonian). Secondly, we identify two maximally superintegrable Hamiltonians by choosing a specific central potential and finding at the same time the remaining integral. The former is the generalization of the Smorodinsky-Winternitz system to the above six spaces, while the latter is a generalization of the Kepler-Coulomb potential, for which the Laplace-Runge-Lenz N-vector is also given. All the systems and constants of the motion are explicitly expressed in a unified form in terms of ambient and polar coordinates as they are parametrized by two contraction parameters (curvature and signature of the metric).Comment: 14 pages. Based on the contribution presented at the "XII International Conference on Symmetry Methods in Physics", Yerevan (Armenia), July 2006. To appear in Physics of Atomic Nucle

    Families of classical subgroup separable superintegrable systems

    Full text link
    We describe a method for determining a complete set of integrals for a classical Hamiltonian that separates in orthogonal subgroup coordinates. As examples, we use it to determine complete sets of integrals, polynomial in the momenta, for some families of generalized oscillator and Kepler-Coulomb systems, hence demonstrating their superintegrability. The latter generalizes recent results of Verrier and Evans, and Rodriguez, Tempesta and Winternitz. Another example is given of a superintegrable system on a non-conformally flat space.Comment: 9 page
    corecore