366 research outputs found
Quadratic Algebra Approach to Relativistic Quantum Smorodinsky-Winternitz Systems
There exist a relation between the Klein-Gordon and the Dirac equations with
scalar and vector potentials of equal magnitude (SVPEM) and the Schrodinger
equation. We obtain the relativistic energy spectrum for the four
Smorodinsky-Winternitz systems from the quasi-Hamiltonian and the quadratic
algebras obtained by Daskaloyannis in the non-relativistic context. We point
out how results obtained in context of quantum superintegrable systems and
their polynomial algebras may be applied to the quantum relativistic case. We
also present the symmetry algebra of the Dirac equation for these four systems
and show that the quadratic algebra obtained is equivalent to the one obtained
from the quasi-Hamiltonian.Comment: 19 page
Infinite families of superintegrable systems separable in subgroup coordinates
A method is presented that makes it possible to embed a subgroup separable
superintegrable system into an infinite family of systems that are integrable
and exactly-solvable. It is shown that in two dimensional Euclidean or
pseudo-Euclidean spaces the method also preserves superintegrability. Two
infinite families of classical and quantum superintegrable systems are obtained
in two-dimensional pseudo-Euclidean space whose classical trajectories and
quantum eigenfunctions are investigated. In particular, the wave-functions are
expressed in terms of Laguerre and generalized Bessel polynomials.Comment: 19 pages, 6 figure
Path Integral Approach for Superintegrable Potentials on Spaces of Non-constant Curvature: II. Darboux Spaces DIII and DIV
This is the second paper on the path integral approach of superintegrable
systems on Darboux spaces, spaces of non-constant curvature. We analyze in the
spaces \DIII and \DIV five respectively four superintegrable potentials,
which were first given by Kalnins et al. We are able to evaluate the path
integral in most of the separating coordinate systems, leading to expressions
for the Green functions, the discrete and continuous wave-functions, and the
discrete energy-spectra. In some cases, however, the discrete spectrum cannot
be stated explicitly, because it is determined by a higher order polynomial
equation.
We show that also the free motion in Darboux space of type III can contain
bound states, provided the boundary conditions are appropriate. We state the
energy spectrum and the wave-functions, respectively
Third order superintegrable systems separating in polar coordinates
A complete classification is presented of quantum and classical
superintegrable systems in that allow the separation of variables in
polar coordinates and admit an additional integral of motion of order three in
the momentum. New quantum superintegrable systems are discovered for which the
potential is expressed in terms of the sixth Painlev\'e transcendent or in
terms of the Weierstrass elliptic function
Superintegrability on sl(2)-coalgebra spaces
We review a recently introduced set of N-dimensional quasi-maximally
superintegrable Hamiltonian systems describing geodesic motions, that can be
used to generate "dynamically" a large family of curved spaces. From an
algebraic viewpoint, such spaces are obtained through kinetic energy
Hamiltonians defined on either the sl(2) Poisson coalgebra or a quantum
deformation of it. Certain potentials on these spaces and endowed with the same
underlying coalgebra symmetry have been also introduced in such a way that the
superintegrability properties of the full system are preserved. Several new N=2
examples of this construction are explicitly given, and specific Hamiltonians
leading to spaces of non-constant curvature are emphasized.Comment: 12 pages. Based on the contribution presented at the "XII
International Conference on Symmetry Methods in Physics", Yerevan (Armenia),
July 2006. To appear in Physics of Atomic Nucle
Superintegrable systems with spin and second-order integrals of motion
We investigate a quantum nonrelativistic system describing the interaction of
two particles with spin 1/2 and spin 0, respectively. We assume that the
Hamiltonian is rotationally invariant and parity conserving and identify all
such systems which allow additional integrals of motion that are second order
matrix polynomials in the momenta. These integrals are assumed to be scalars,
pseudoscalars, vectors or axial vectors. Among the superintegrable systems
obtained, we mention a generalization of the Coulomb potential with scalar
potential and spin orbital one
.Comment: 32 page
Structure results for higher order symmetry algebras of 2D classical superintegrable systems
Recently the authors and J.M. Kress presented a special function recurrence
relation method to prove quantum superintegrability of an integrable 2D system
that included explicit constructions of higher order symmetries and the
structure relations for the closed algebra generated by these symmetries. We
applied the method to 5 families of systems, each depending on a rational
parameter k, including most notably the caged anisotropic oscillator, the
Tremblay, Turbiner and Winternitz system and a deformed Kepler-Coulomb system.
Here we work out the analogs of these constructions for all of the associated
classical Hamiltonian systems, as well as for a family including the generic
potential on the 2-sphere. We do not have a proof in every case that the
generating symmetries are of lowest possible order, but we believe this to be
so via an extension of our method.Comment: 23 page
An infinite family of superintegrable Hamiltonians with reflection in the plane
We introduce a new infinite class of superintegrable quantum systems in the
plane. Their Hamiltonians involve reflection operators. The associated
Schr\"odinger equations admit separation of variables in polar coordinates and
are exactly solvable. The angular part of the wave function is expressed in
terms of little -1 Jacobi polynomials. The spectra exhibit "accidental"
degeneracies. The superintegrability of the model is proved using the
recurrence relation approach. The (higher-order) constants of motion are
constructed and the structure equations of the symmetry algebra obtained.Comment: 19 page
Superintegrability on N-dimensional spaces of constant curvature from so(N+1) and its contractions
The Lie-Poisson algebra so(N+1) and some of its contractions are used to
construct a family of superintegrable Hamiltonians on the ND spherical,
Euclidean, hyperbolic, Minkowskian and (anti-)de Sitter spaces. We firstly
present a Hamiltonian which is a superposition of an arbitrary central
potential with N arbitrary centrifugal terms. Such a system is quasi-maximally
superintegrable since this is endowed with 2N-3 functionally independent
constants of the motion (plus the Hamiltonian). Secondly, we identify two
maximally superintegrable Hamiltonians by choosing a specific central potential
and finding at the same time the remaining integral. The former is the
generalization of the Smorodinsky-Winternitz system to the above six spaces,
while the latter is a generalization of the Kepler-Coulomb potential, for which
the Laplace-Runge-Lenz N-vector is also given. All the systems and constants of
the motion are explicitly expressed in a unified form in terms of ambient and
polar coordinates as they are parametrized by two contraction parameters
(curvature and signature of the metric).Comment: 14 pages. Based on the contribution presented at the "XII
International Conference on Symmetry Methods in Physics", Yerevan (Armenia),
July 2006. To appear in Physics of Atomic Nucle
Families of classical subgroup separable superintegrable systems
We describe a method for determining a complete set of integrals for a
classical Hamiltonian that separates in orthogonal subgroup coordinates. As
examples, we use it to determine complete sets of integrals, polynomial in the
momenta, for some families of generalized oscillator and Kepler-Coulomb
systems, hence demonstrating their superintegrability. The latter generalizes
recent results of Verrier and Evans, and Rodriguez, Tempesta and Winternitz.
Another example is given of a superintegrable system on a non-conformally flat
space.Comment: 9 page
- …