51 research outputs found

    Storage of Correlated Patterns in Standard and Bistable Purkinje Cell Models

    Get PDF
    The cerebellum has long been considered to undergo supervised learning, with climbing fibers acting as a β€˜teaching’ or β€˜error’ signal. Purkinje cells (PCs), the sole output of the cerebellar cortex, have been considered as analogs of perceptrons storing input/output associations. In support of this hypothesis, a recent study found that the distribution of synaptic weights of a perceptron at maximal capacity is in striking agreement with experimental data in adult rats. However, the calculation was performed using random uncorrelated inputs and outputs. This is a clearly unrealistic assumption since sensory inputs and motor outputs carry a substantial degree of temporal correlations. In this paper, we consider a binary output neuron with a large number of inputs, which is required to store associations between temporally correlated sequences of binary inputs and outputs, modelled as Markov chains. Storage capacity is found to increase with both input and output correlations, and diverges in the limit where both go to unity. We also investigate the capacity of a bistable output unit, since PCs have been shown to be bistable in some experimental conditions. Bistability is shown to enhance storage capacity whenever the output correlation is stronger than the input correlation. Distribution of synaptic weights at maximal capacity is shown to be independent on correlations, and is also unaffected by the presence of bistability

    КомплСксная лучСвая диагностика ΠΎΡ‚Π³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ мСстного ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½ΠΈΡ‚Π°

    Get PDF
    The purpose of the study. To clarify the possibilities of using radiation research methods in the framework of complex diagnostics of local peritonitis for timely recognition and treatment of intra-abdominal abscesses and infiltrates.Materials and methods. The analysis of the results of a complex radiation examination in 61 patients with local peritonitis of various etiologies who were treated at the N.V. Sklifosovsky Research Institute for Emergency Medicine was carried out. The complex of radiation diagnostics included ultrasound and X-ray examinations, computed tomography (CT). The studies were performed both initially at admission and in dynamics.Results. The diagnostic algorithm for local peritonitis is analyzed, three stages are identified with the determination of the method of choice on each of them. Ultrasound and X-ray examination methods are mainly used at the stage of primary diagnostics and for dynamic control. CT allows you to clarify the type, localization and volume of inflammatory changes, their relationship with the surrounding organs and structures. When analyzing the results of radiation diagnostics, it was determined the need to identify and evaluate the main signs of local peritonitis, both direct: the presence of voluminous formation of inflammatory genesis (infiltrate and/or abscess); and indirect: changes in the source organ of peritonitis; changes in structures adjacent to the infiltrate /abscess; the presence of reactive effusion into the thoracic and abdominal cavities.Conclusion. Comprehensive radiation diagnostics for local peritonitis makes it possible to obtain complete information about the nature of both inflammatory changes in local peritonitis and the causes of them. The obtained data of complex diagnostics help the surgeon to choose a rational treatment strategy for these patients, including minimally invasive. Diagnostic monitoring allows you to evaluate the effectiveness of treatment and carry out timely correction of tactics.ЦСль исслСдования: ΡƒΡ‚ΠΎΡ‡Π½ΠΈΡ‚ΡŒ возмоТности примСнСния Π»ΡƒΡ‡Π΅Π²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² исслСдования Π² Ρ€Π°ΠΌΠΊΠ°Ρ… комплСксной диагностики ΠΎΡ‚Π³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ мСстного ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½ΠΈΡ‚Π° для своСврСмСнного распознавания ΠΈ лСчСния Π²Π½ΡƒΡ‚Ρ€ΠΈΠ±Ρ€ΡŽΡˆΠ½Ρ‹Ρ… абсцСссов ΠΈ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ‚ΠΎΠ².ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² комплСксного Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ исслСдования Ρƒ 61 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° с ΠΎΡ‚Π³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌ мСстным ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½ΠΈΡ‚ΠΎΠΌ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ этиологии, Π½Π°Ρ…ΠΎΠ΄ΠΈΠ²ΡˆΠΈΡ…ΡΡ Π½Π° Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Π² НИИ БП ΠΈΠΌ. Н.Π’. Бклифосовского. КомплСкс Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ диагностики Π²ΠΊΠ»ΡŽΡ‡Π°Π» ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ΅ ΠΈ рСнтгСнологичСскоС исслСдования, ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΡƒΡŽ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΡŽ. ИсслСдования Π±Ρ‹Π»ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎ ΠΏΡ€ΠΈ поступлСнии, Ρ‚Π°ΠΊ ΠΈ Π² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ диагностичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΏΡ€ΠΈ ΠΎΡ‚Π³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΌ мСстном ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½ΠΈΡ‚Π΅, Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ Ρ‚Ρ€ΠΈ этапа с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π²Ρ‹Π±ΠΎΡ€Π° Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· Π½ΠΈΡ…. Π£Π»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΉ ΠΈ рСнтгСновский ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ прСимущСствСнно Π½Π° этапС ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ диагностики ΠΈ для динамичСского контроля. ΠšΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Π°Ρ томография позволяСт ΡƒΡ‚ΠΎΡ‡Π½ΠΈΡ‚ΡŒ Π²ΠΈΠ΄, Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΈ объСм Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ, ΠΈΡ… Π²Π·Π°ΠΈΠΌΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ с ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΠΈΠΌΠΈ ΠΎΡ€Π³Π°Π½Π°ΠΌΠΈ ΠΈ структурами. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ диагностики Π±Ρ‹Π»Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ Π² выявлСнии ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ основных ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΎΡ‚Π³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ мСстного ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½ΠΈΡ‚Π°, ΠΊΠ°ΠΊ прямых: Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ объСмного образования Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Π° (ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ‚ ΠΈ/ΠΈΠ»ΠΈ абсцСсс), Ρ‚Π°ΠΊ ΠΈ косвСнных: измСнСния ΠΎΡ€Π³Π°Π½Π° – источника ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½ΠΈΡ‚Π°; измСнСния ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΠΊ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ‚Ρƒ/абсцСссу структур;Β  Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π²Ρ‹ΠΏΠΎΡ‚Π° Π² Π³Ρ€ΡƒΠ΄Π½ΡƒΡŽ ΠΈ Π±Ρ€ΡŽΡˆΠ½ΡƒΡŽ полости.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. КомплСксная лучСвая диагностика ΠΏΡ€ΠΈ ΠΎΡ‚Π³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΌ мСстном ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½ΠΈΡ‚Π΅ Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΠΎΠ»Π½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π΅ ΠΊΠ°ΠΊ Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ полости, Ρ‚Π°ΠΊ ΠΈ ΠΏΡ€ΠΈΡ‡ΠΈΠ½, ΠΈΡ… Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ…. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ комплСксной диагностики ΠΏΠΎΠΌΠΎΠ³Π°ΡŽΡ‚ Ρ…ΠΈΡ€ΡƒΡ€Π³Ρƒ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΡƒ лСчСния этих Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, Π² Ρ‚ΠΎΠΌ числС минимально ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΡƒΡŽ. ДиагностичСский ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ позволяСт ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ лСчСния ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΡΠ²ΠΎΠ΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΡŽ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΠΈ

    Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite.

    No full text
    Solar cells based on organometal halide perovskites have seen rapidly increasing efficiencies, now exceeding 15%. Despite this progress, there is still limited knowledge on the fundamental photophysics. Here we use microwave photoconductance and photoluminescence measurements to investigate the temperature dependence of the carrier generation, mobility, and recombination in (CH3NH3)PbI3. At temperatures maintaining the tetragonal crystal phase of the perovskite, we find an exciton binding energy of about 32 meV, leading to a temperature-dependent yield of highly mobile (6.2 cm(2)/(V s) at 300 K) charge carriers. At higher laser intensities, second-order recombination with a rate constant of gamma = 13 x 10(-10) cm(3) s(-1) becomes apparent. Reducing the temperature results in increasing charge carrier mobilities following a T-1.6 dependence, which we attribute to a reduction in phonon scattering (Sigma mu = 16 cm(2)/(V s) at 165 K). Despite the fact that Sigma mu increases, gamma diminishes with a factor six, implying that charge recombination in (CH3NH3)PbI3 is temperature activated. The results underline the importance of the perovskite crystal structure, the exciton binding energy, and the activation energy for recombination as key factors in optimizing new perovskite materials
    • …
    corecore