94,119 research outputs found
Noise of Kondo dot with ac gate: Floquet-Green's function and Noncrossing Approximation Approach
The transport properties of an ac-driving quantum dot in the Kondo regime are
studied by the Floquet-Green's function method with slave-boson infinite-
noncrossing approximation. Our results show that the Kondo peak of the local
density of states is robust against weak ac gate modulation. Significant
suppression of the Kondo peak can be observed when the ac gate field becomes
strong. The photon-assisted noise of Kondo resonance as a function of dc
voltage does not show singularities which are expected for noninteracting
resonant quantum dot. These findings suggest that one may make use of the
photon-assisted noise measurement to tell apart whether the resonant transport
is via noninteracting resonance or strongly-correlated Kondo resonance
Insulating state and the importance of the spin-orbit coupling in CaCoRhO
We have carried out a comparative theoretical study of the electronic
structure of the novel one-dimensional CaCoRhO and CaFeRhO
systems. The insulating antiferromagnetic state for the CaFeRhO can be
well explained by band structure calculations with the closed shell high-spin
(Fe) and low-spin (Rh) configurations. We
found for the CaCoRhO that the Co has a strong tendency to be
(Co) rather than (Co), and that there is an orbital
degeneracy in the local Co electronic structure. We argue that it is the
spin-orbit coupling which will lift this degeneracy thereby enabling local spin
density approximation + Hubbard U (LSDA+U) band structure calculations to
generate the band gap. We predict that the orbital contribution to the magnetic
moment in CaCoRhO is substantial, i.e. significantly larger than 1
per formula unit. Moreover, we propose a model for the contrasting
intra-chain magnetism in both materials.Comment: 7 pages, 4 figures, and 1 tabl
Ferrimagnetism of the magnetoelectric compound CuOSeO probed by Se NMR
We present a thorough Se NMR study of a single crystal of the
magnetoelectric compound CuOSeO. The temperature dependence of the
local electronic moments extracted from the NMR data is fully consistent with a
magnetic phase transition from the high-T paramagnetic phase to a low-T
ferrimagnetic state with 3/4 of the Cu ions aligned parallel and 1/4
aligned antiparallel to the applied field of 14.09 T. The transition to this
3up-1down magnetic state is not accompanied by any splitting of the NMR lines
or any abrupt modification in their broadening, hence there is no observable
reduction of the crystalline symmetry from its high-T cubic \textit{P}23
space group. These results are in agreement with high resolution x-ray
diffraction and magnetization data on powder samples reported previously by Bos
{\it et al.} [Phys. Rev. B, {\bf 78}, 094416 (2008)]. We also develop a mean
field theory description of the problem based on a microscopic spin Hamiltonian
with one antiferromagnetic ( K) and one ferromagnetic
( K) nearest-neighbor exchange interaction
Optical response of graphene under intense terahertz fields
Optical responses of graphene in the presence of intense circularly and
linearly polarized terahertz fields are investigated based on the Floquet
theory. We examine the energy spectrum and density of states. It is found that
gaps open in the quasi-energy spectrum due to the single-photon/multi-photon
resonances. These quasi-energy gaps are pronounced at small momentum, but
decrease dramatically with the increase of momentum and finally tend to be
closed when the momentum is large enough. Due to the contribution from the
states at large momentum, the gaps in the density of states are effectively
closed, in contrast to the prediction in the previous work by Oka and Aoki
[Phys. Rev. B {\bf 79}, 081406(R) (2009)]. We also investigate the optical
conductivity for different field strengths and Fermi energies, and show the
main features of the dynamical Franz-Keldysh effect in graphene. It is
discovered that the optical conductivity exhibits a multi-step-like structure
due to the sideband-modulated optical transition. It is also shown that dips
appear at frequencies being the integer numbers of the applied terahertz field
frequency in the case of low Fermi energy, originating from the quasi-energy
gaps at small momentums. Moreover, under a circularly polarized terahertz
field, we predict peaks in the middle of the "steps" and peaks induced by the
contribution from the states around zero momentum in the optical conductivity.Comment: 15 pages, 10 figure
Giant isotope effect and spin state transition induced by oxygen isotope exchange in (
We systematically investigate effect of oxygen isotope in
which shows a crossover with x from
ferromagnetic metal to the insulator with spin-state transition. A striking
feature is that effect of oxygen isotope on the ferromagnetic transition is
negligible in the metallic phase, while replacing with leads
to a giant up-shift of the spin-state transition temperature () in the
insulating phase, especially shifts from 36 to 54 K with isotope
component for the sample with x=0.175. A metal-insulator
transition is induced by oxygen isotope exchange in the sample x=0.172 being
close to the insulating phase. The contrasting behaviors observed in the two
phases can be well explained by occurrence of static Jahn-Teller distortions in
the insulating phase, while absence of them in the metallic phase.Comment: 4 pages, 5 figure
Self-gravitating astrophysical mass with singular central density vibrating in fundamental mode
The fluid-dynamical model of a self-gravitating mass of viscous liquid with
singular density at the center vibrating in fundamental mode is considered in
juxtaposition with that for Kelvin fundamental mode in a homogeneous heavy mass
of incompressible inviscid liquid. Particular attention is given to the
difference between spectral formulae for the frequency and lifetime of -mode
in the singular and homogeneous models. The newly obtained results are
discussed in the context of theoretical asteroseismology of pre-white dwarf
stage of red giants and stellar cocoons -- spherical gas-dust clouds with dense
star-forming core at the center.Comment: Mod. Phys. Lett. A, Vol. 24, No. 40 (2009) pp. 3257-327
Formation of Narrow Dust Rings in Circumstellar Debris Disks
Narrow dust rings observed around some young stars (e.g., HR 4796A) need to
be confined. We present a possible explanation for the formation and
confinement of such rings in optically thin circumstellar disks, without
invoking shepherding planets. If an enhancement of dust grains (e.g., due to a
catastrophic collision) occurs somewhere in the disk, photoelectric emission
from the grains can heat the gas to temperatures well above that of the dust.
The gas orbits with super(sub)-Keplerian speeds inward (outward) of the
associated pressure maximum. This tends to concentrate the grains into a narrow
region. The rise in dust density leads to further heating and a stronger
concentration of grains. A narrow dust ring forms as a result of this
instability. We show that this mechanism not only operates around early-type
stars that have high UV fluxes, but also around stars with spectral types as
late as K. This implies that this process is generic and may have occurred
during the lifetime of each circumstellar disk. We examine the stringent
upper-limit on the H2 column density in the HR 4796A disk and find it to be
compatible with the presence of a significant amount of hydrogen gas in the
disk. We also compute the OI and CII infrared line fluxes expected from various
debris disks and show that these will be easily detectable by the upcoming
Herschel mission. Herschel will be instrumental in detecting and characterizing
gas in these disks.Comment: Accepted for publication in ApJ; 14 pages, 7 figure
Nature of magnetism in CaCoO
We find using LSDA+U band structure calculations that the novel
one-dimensional cobaltate CaCoO is not a ferromagnetic half-metal
but a Mott insulator. Both the octahedral and the trigonal Co ions are formally
trivalent, with the octahedral being in the low-spin and the trigonal in the
high-spin state. The inclusion of the spin-orbit coupling leads to the
occupation of the minority-spin orbital for the unusually coordinated
trigonal Co, producing a giant orbital moment (1.57 ). It also results
in an anomalously large magnetocrystalline anisotropy (of order 70 meV),
elucidating why the magnetism is highly Ising-like. The role of the oxygen
holes, carrying an induced magnetic moment of 0.13 per oxygen, for
the exchange interactions is discussed.Comment: 5 pages, 4 figures, and 1 tabl
- …