9,796 research outputs found

    Cystatins as calpain inhibitors: Engineered chicken cystatin- and stefin B-kininogen domain 2 hybrids support a cystatin-like mode of interaction with the catalytic subunit of ÎĽ-calpain

    Get PDF
    Within the cystatin superfamily, only kininogen domain 2 (KD2) is able to inhibit ÎĽ- and m-calpain. In an attempt to elucidate the structural requirements of cystatins for calpain inhibition, we constructed recombinant hybrids of human stefin B (an intracellular family 1 cystatin) with KD2 and Delta L110 deletion mutants of chicken cystatin-KD2 hybrids. Substitution of the N-terminal contact region of stefin B by the corresponding KD2 sequence resulted in a calpain inhibitor of K-i = 188 nM. Deletion of L110, which forms a beta -bulge in family 1 and 2 cystatins but is lacking in KD2, improved inhibition of mu -calpain 4- to 8-fold. All engineered cystatins were temporary inhibitors of calpain due to slow substrate-like cleavage of a single peptide bond corresponding to Gly9-Ala10 in chicken cystatin. Biomolecular interaction analysis revealed that, unlike calpastatin, the cystatin-type inhibitors do not bind to the calmodulin-like domain of the small subunit of calpain, and their interaction with the mu -calpain heterodimer is completely prevented by a synthetic peptide comprising subdomain B of calpastatin domain 1. Based on these results we propose that (i) cystatin-type calpain inhibitors interact with the active site of the catalytic domain of calpain in a similar cystatin-like mode as with papain and (ii) the potential for calpain inhibition is due to specific subsites within the papain-binding regions of the general cystatin fold

    High-Resolution Observations of Interstellar Ca I Absorption -- Implications for Depletions and Electron Densities in Diffuse Clouds

    Get PDF
    We present high-resolution (FWHM ~ 0.3-1.5 km/s) spectra of interstellar Ca I absorption toward 30 Galactic stars. Comparisons of the column densities of Ca I, Ca II, K I, and other species -- for individual components identified in the line profiles and also when integrated over entire lines of sight -- yield information on relative electron densities and depletions. There is no obvious relationship between the ratio N(Ca I)/N(Ca II) [equal to n_e/(Gamma/alpha_r) for photoionization equilibrium] and the fraction of hydrogen in molecular form f(H2) (often taken to be indicative of the local density n_H). For a smaller sample of sightlines for which the thermal pressure (n_H T) and local density can be estimated via analysis of the C I fine-structure excitation, the average electron density inferred from C, Na, and K (assuming photoionization equilibrium) seems to be independent of n_H and n_H T. While the n_e obtained from the ratio N(Ca I)/N(Ca II) is often significantly higher than the values derived from other elements, the patterns of relative n_e derived from different elements show both similarities and differences for different lines of sight -- suggesting that additional processes besides photoionization and radiative recombination commonly and significantly affect the ionization balance of heavy elements in diffuse IS clouds. Such additional processes may also contribute to the (apparently) larger than expected fractional ionizations (n_e/n_H) found for some lines of sight with independent determinations of n_H. In general, inclusion of ``grain-assisted'' recombination does reduce the inferred n_e, but it does not reconcile the n_e estimated from different elements. The depletion of calcium may have a much weaker dependence on density than was suggested by earlier comparisons with CH and CN.Comment: aastex, 70 pages, accepted to ApJ

    A laser-driven target of high-density nuclear polarized hydrogen gas

    Full text link
    We report the best figure-of-merit achieved for an internal nuclear polarized hydrogen gas target and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the simulation. The best result achieved for this target was 50.5% polarization with 58.2% degree of dissociation of the sample beam exiting the storage cell at a hydrogen flow rate of 1.1Ă—10181.1\times 10^{18} atoms/s.Comment: Accepted as a Rapid Communication article in Phys. Rev.

    Reanalysis of Copernicus Measurements on Interstellar Carbon Monoxide

    Full text link
    We used archival data acquired with the Copernicus satellite to reexamine CO column densities because self-consistent oscillator strengths are now available. Our focus is on lines of sight containing modest amounts of molecular species. Our resulting column densities are small enough that self-shielding from photodissociation is not occurring in the clouds probed by the observations. While our sample shows that the column densities of CO and H2 are related, no correspondence with the CH column density is evident. The case for the CH+ column density is less clear. Recent chemical models for these sight lines suggest that CH is mainly a by-product of CH+ synthesis in low density gas. The models are most successful in reproducing the amounts of CO in the densest sight lines. Thus, much of the CO absorption must arise from denser clumps along the line of sight to account for the trend with H2.Comment: 19 pages, 6 figures. Accepted for publication in Ap

    Timing the Parkes Multibeam Pulsars

    Get PDF
    Measurement of accurate positions, pulse periods and period derivatives is an essential follow-up to any pulsar survey. The procedures being used to obtain timing parameters for the pulsars discovered in the Parkes multibeam pulsar survey are described. Completed solutions have been obtained so far for about 80 pulsars. They show that the survey is preferentially finding pulsars with higher than average surface dipole magnetic fields. Eight pulsars have been shown to be members of binary systems and some of the more interesting results relating to these are presented.Comment: 6 pages, 2 embedded EPS figures, to be published in proceedings of "Pulsar Astronomy - 2000 and Beyond", ASP Conf. Se

    Heavy Baryon Production and Decay

    Full text link
    The branching ratio B(Lambda_c -> p K- pi+) normalizes the production and decay of charmed and bottom baryons. At present, this crucial branching ratio is extracted dominantly from B.bar -> baryons analyses. This note questions several of the underlying assumptions and predicts sizable B.bar -> D(*) N N'.bar X transitions, which were traditionally neglected. It predicts B(Lambda_c -> p K- pi+) to be significantly larger (0.07 +/- 0.02) than the world average. Some consequences are briefly mentioned. Several techniques to measure B(Lambda_c -> p K- pi+) are outlined with existing or soon available data samples. By equating two recent CLEO results, an appendix obtains B(D0 -> K- pi+)= 0.035 +/- 0.002, which is somewhat smaller than the current world average.Comment: 27 pages, 4 eps figures, revte
    • …
    corecore