3,299 research outputs found
Atomic frequency comb memory in an isotopically pure 143Nd3+:Y7LiF4 crystal
© 2016 Astro Ltd. We implemented the atomic frequency comb protocol for optical quantum memory in an isotopically pure crystal of Y7LiF4 doped by 143Nd3+ ions. Echo signals were observed on the 4I9/2(1)-4F3/2(1) transition, which had inhomogeneous broadening much smaller than the hyperfine splitting of the ground and excited states. We performed hole-burning spectroscopy measurements on several transitions, obtaining information about the hyperfine state lifetimes. An intrinsic hole structure was found on some of the transitions, which allowed us to prepare a comb structure with two clearly defined periods and to observe echo pulses with different time delays
Measurement of the decay form factors in the OKA experiment
A precise measurement of the vector and axial-vector form factors difference
in the decay is presented.
About 95K events of are selected in
the OKA experiment. The result is .
Both errors are smaller than in the previous measurements.Comment: 9 pages, 8 figure
A search for light dark matter in XENON10 data
We report results of a search for light (<10 GeV) particle dark matter with
the XENON10 detector. The event trigger was sensitive to a single electron,
with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear
recoil energy. Considering spin-independent dark matter-nucleon scattering, we
exclude cross sections \sigma_n>3.5x10^{-42} cm^2, for a dark matter particle
mass m_{\chi}=8 GeV. We find that our data strongly constrain recent elastic
dark matter interpretations of excess low-energy events observed by CoGeNT and
CRESST-II, as well as the DAMA annual modulation signal.Comment: Manuscript identical to v2 (published version) but also contains
erratum. Note v3==v2 but without \linenumber
Inferring possible magnetic field strength of accreting inflows in EXor-type objects from scaled laboratory experiments
Aims. EXor-type objects are protostars that display powerful UV-optical outbursts caused by intermittent and powerful events of magnetospheric accretion. These objects are not yet well investigated and are quite difficult to characterize. Several parameters, such as plasma stream velocities, characteristic densities, and temperatures, can be retrieved from present observations. As of yet, however, there is no information about the magnetic field values and the exact underlying accretion scenario is also under discussion. Methods. We use laboratory plasmas, created by a high power laser impacting a solid target or by a plasma gun injector, and make these plasmas propagate perpendicularly to a strong external magnetic field. The propagating plasmas are found to be well scaled to the presently inferred parameters of EXor-type accretion event, thus allowing us to study the behaviour of such episodic accretion processes in scaled conditions. Results. We propose a scenario of additional matter accretion in the equatorial plane, which claims to explain the increased accretion rates of the EXor objects, supported by the experimental demonstration of effective plasma propagation across the magnetic field. In particular, our laboratory investigation allows us to determine that the field strength in the accretion stream of EXor objects, in a position intermediate between the truncation radius and the stellar surface, should be of the order of 100 G. This, in turn, suggests a field strength of a few kilogausses on the stellar surface, which is similar to values inferred from observations of classical T Tauri stars
Recommended from our members
Snake venom phospholipase A2s exhibit strong virucidal activity against SARS-CoV-2 and inhibit the viral spike glycoprotein interaction with ACE2.
The COVID-19 pandemic caused by SARS-CoV-2 requires new treatments both to alleviate the symptoms and to prevent the spread of this disease. Previous studies demonstrated good antiviral and virucidal activity of phospholipase A2s (PLA2s) from snake venoms against viruses from different families but there was no data for coronaviruses. Here we show that PLA2s from snake venoms protect Vero E6 cells against SARS-CoV-2 cytopathic effects. PLA2s showed low cytotoxicity to Vero E6 cells with some activity at micromolar concentrations, but strong antiviral activity at nanomolar concentrations. Dimeric PLA2 from the viper Vipera nikolskii and its subunits manifested especially potent virucidal effects, which were related to their phospholipolytic activity, and inhibited cell-cell fusion mediated by the SARS-CoV-2 spike glycoprotein. Moreover, PLA2s interfered with binding both of an antibody against ACE2 and of the receptor-binding domain of the glycoprotein S to 293T/ACE2 cells. This is the first demonstration of a detrimental effect of PLA2s on β-coronaviruses. Thus, snake PLA2s are promising for the development of antiviral drugs that target the viral envelope, and could also prove to be useful tools to study the interaction of viruses with host cells
ChPT tests at the NA48 and NA62 experiments at CERN
The NA48/2 Collaboration at CERN has accumulated unprecedented statistics of
rare kaon decays in the Ke4 modes: Ke4(+-) ()
and Ke4(00) () with nearly one percent
background contamination. The detailed study of form factors and branching
rates, based on these data, has been completed recently. The results brings new
inputs to low energy strong interactions description and tests of Chiral
Perturbation Theory (ChPT) and lattice QCD calculations. In particular, new
data support the ChPT prediction for a cusp in the invariant mass
spectrum at the two charged pions threshold for Ke4(00) decay. New final
results from an analysis of about 400 rare
decay candidates collected by the NA48/2 and NA62 experiments at CERN during
low intensity runs with minimum bias trigger configurations are presented. The
results include a model-independent decay rate measurement and fits to ChPT
description.Comment: XIIth International Conference on Heavy Quarks and Leptons 2014,
Mainz, German
Recent NA48/2 and NA62 results
The NA48/2 Collaboration at CERN has accumulated and analysed unprecedented
statistics of rare kaon decays in the modes: () and ()
with nearly one percent background contamination. It leads to the improved
measurement of branching fractions and detailed form factor studies. New final
results from the analysis of 381 rare decay
candidates collected by the NA48/2 and NA62 experiments at CERN are presented.
The results include a decay rate measurement and fits to Chiral Perturbation
Theory (ChPT) description.Comment: Prepared for the Proceedings of "Moriond QCD and High Energy
Interactions. March 22-29 2014." conferenc
Searches for the light invisible axion-like particle in decay
A high statistics data sample of the decays is recorded by the OKA
collaboration. A missing mass analysis is performed to search for a light
invisible pseudoscalar axion-like particle (ALP) in the decay . No signal is observed, the upper limits for the branching
ratio of the decay are calculated. The confidence level upper limit is
changing from to for the ALP mass from 0 to
200 MeV/, except for the region of mass, where the upper limit
is .Comment: 6 pages, 6 figure
- …