22 research outputs found

    Pore dynamics in lipid membranes

    No full text
    Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses

    From Chondrocytes to Chondrons, Maintenance of Phenotype and Matrix Production in a Composite 3D Hydrogel Scaffold

    No full text
    Osteoarthritis (OA) is a degenerative disease characterized by articular cartilage (AC) degradation that affects more than 30 million people in the USA. OA is managed with symptom-alleviating medications. Matrix-assisted autologous chondrocyte transplantation (MACT) is a tissue-engineered option, but current products are expensive and lack mechanical tunability or processability to match defect mechanical properties and anatomical shapes. Here, we explore the efficacy of a biocompatible hydrogel-based scaffold composed of sodium alginate, gelatin, and gum Arabic—referred to by SA–GEL–GA—to support bovine articular chondrocyte (bAChs) proliferation, pericellular matrix (PCM), and extracellular matrix (ECM) production. bAChs were grown for 45 days in SA–GEL–GA. Their viability, their live/dead status, histological staining, biochemical assays for glycosaminoglycans (GAGs) and collagen, atomic force microscopy (AFM) imaging, and immunofluorescence staining of collagen I, collagen II, aggrecan, and CD44 were assessed. We found that SA–GEL–GA was not cytotoxic, induced cellular proliferation by 6.1-fold while maintaining a round morphology, and supported ECM deposition by producing 3.9-fold more GAG compared to day 0. bAChs transformed into chondrons and produced a PCM enriched with collagen II (3.4-fold), aggrecan (1.7-fold), and CD44 (1.3-fold) compared to day 0. In summary, SA–GEL–GA supported the proliferation, ECM production, and PCM production of bAChs in vitro
    corecore