4,532 research outputs found

    Continuum Limits of ``Induced QCD": Lessons of the Gaussian Model at d=1 and Beyond

    Full text link
    We analyze the scalar field sector of the Kazakov--Migdal model of induced QCD. We present a detailed description of the simplest one dimensional {(dd==11)} model which supports the hypothesis of wide applicability of the mean--field approximation for the scalar fields and the existence of critical behaviour in the model when the scalar action is Gaussian. Despite the ocurrence of various non--trivial types of critical behaviour in the d=1d=1 model as N→∞N\rightarrow\infty, only the conventional large-NN limit is relevant for its {\it continuum} limit. We also give a mean--field analysis of the N=2N=2 model in {\it any} dd and show that a saddle point always exists in the region m2>mcrit2(=d)m^2>m_{\rm crit}^2(=d). In d=1d=1 it exhibits critical behaviour as m2→mcrit2m^2\rightarrow m_{\rm crit}^2. However when dd>>11 there is no critical behaviour unless non--Gaussian terms are added to the scalar field action. We argue that similar behaviour should occur for any finite NN thus providing a simple explanation of a recent result of D. Gross. We show that critical behaviour at dd>>11 and m2>mcrit2m^2>m^2_{\rm crit} can be obtained by adding a logarithmiclogarithmic term to the scalar potential. This is equivalent to a local modification of the integration measure in the original Kazakov--Migdal model. Experience from previous studies of the Generalized Kontsevich Model implies that, unlike the inclusion of higher powers in the potential, this minor modification should not substantially alter the behaviour of the Gaussian model.Comment: 31 page

    On non existence of tokamak equilibria with purely poloidal flow

    Get PDF
    It is proved that irrespective of compressibility tokamak steady states with purely poloidal mass flow can not exist in the framework of either magnetohydrodynamics (MHD) or Hall MHD models. Non-existence persists within single fluid plasma models with pressure anisotropy and incompressible flows.Comment: The conclusion reported in the last sentence of the first paragraph of Sec. V in the version of the paper published in Physics of Plasmas is incorrect. The correct conclusion is given here (15 pages

    Dynamical lattice instability versus spin liquid state in a frustrated spin chain system

    Full text link
    The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration. Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.Comment: 5 pages, 6 figure

    Layer-by-layer laser synthesis of Cu–Al–Ni intermetallic compounds and shape memory effect

    Get PDF
    Published ArticleWe have studied conditions for the synthesis of intermetallic phases in the Cu–Al–Ni system by selective laser sintering/melting, in particular by heating a powder mixture to 300°C. The effects of laser synthesis and heating on the microstructure of the intermetallic phases in the samples obtained have been studied using electron microscopy, optical metallography, and X-ray diffraction analysis. The results demonstrate high sinterability of stoichiometric mixtures. Resistivity measurements indicate that the samples exhibit a shape memory effect. We discuss the feasibility of producing biomicroelectromechanical systems using layerby- layer synthesis

    On the interrelation between monopoles, vortices, topological charge and chiral symmetry breaking: an analysis using overlap fermions for SU(2)

    Full text link
    We study the properties of configurations from which P-vortices on one hand or Abelian monopoles on the other hand have been removed. We find that the zero modes and the band of non-zero modes close to zero disappear from the spectrum of the overlap Dirac operator, confirming the absence of topological charge and quark condensate. The different behavior of the modified ensembles under smearing compared to the unmodified Monte Carlo ensemble corroborates these findings. The gluonic topological susceptibility rapidly approaches zero in accordance with Q_{index}=0. The remaining (ultraviolet) monopoles without vortices and -- to a less extent -- the remaining vortices without monopoles are unstable under smearing whereas smearing of the unmodified Monte Carlo ensemble effects the monopoles and vortices only by smoothing, reducing the density only slightly.Comment: 13 pages, 5 figures, strongly revised, results added, one figure added, accepted for publication, title changed

    Exact results for scattering on ultrashort plane wave backgrounds

    Get PDF
    We give exact results for the emission spectra of both nonlinear Breit-Wheeler pair production and nonlinear Compton scattering in ultra-intense, ultra-short duration plane wave backgrounds, modelled as delta-function pulses. This includes closed form expressions for total scattering probabilities. We show explicitly that these probabilities do not exhibit the power-law scaling with intensity associated with the conjectured breakdown of (Furry picture) perturbation theory, instead scaling logarithmically in the high-intensity limit.Comment: 9 pages, 4 pdf figure

    Theoretical model for the superconducting and magnetically ordered borocarbides

    Full text link
    We present a theory of superconductivity in presence of a general magnetic structure in a form suitable for the description of complex magnetic phases encountered in borocarbides. The theory, complemented with some details of the band structure and with the magnetic phase diagram, may explain the nearly reentrant behaviour and the anisotropy of the upper critical field of HoNi2B2C. The onset of the helical magnetic order depresses superconductivity via the reduction of the interaction between phonons and electrons caused by the formation of magnetic Bloch states. At mean field level, no additional suppression of superconductivity is introduced by the incommensurability of the helical phase.Comment: 8 pages, 2 figures. Published version, one important reference adde
    • …
    corecore