22,047 research outputs found

    Confined coherence in quasi-one-dimensional metals

    Full text link
    We present a functional renormalization group calculation of the effect of strong interactions on the shape of the Fermi surface of weakly coupled metallic chains. In the regime where the bare interchain hopping is small, we show that scattering processes involving large momentum transfers perpendicular to the chains can completely destroy the warping of the true Fermi surface, leading to a confined state where the renormalized interchain hopping vanishes and a coherent motion perpendicular to the chains is impossible.Comment: 4 RevTex pages, 5 figures,final version as published by PR

    How Do Schr\"odinger's Cats Die?

    Full text link
    Recent experiments with superconducting qubits are motivated by the goal of fabricating a quantum computer, but at the same time they illuminate the more fundamental aspects of quantum mechanics. In this paper we analyze the physics of switching current measurements from the point of view of macroscopic quantum mechanics.Comment: 4 figures, 12 page

    Alignments in quasar polarizations: pseudoscalar-photon mixing in the presence of correlated magnetic fields

    Full text link
    We investigate the effects of pseudoscalar-photon mixing on electromagnetic radiation in the presence of correlated extragalactic magnetic fields. We model the Universe as a collection of magnetic domains and study the propagation of radiation through them. This leads to correlations between Stokes parameters over large scales and consistently explains the observed large-scale alignment of quasar polarizations at different redshifts within the framework of the big bang model.Comment: 12 pages, 5 figures, version published in PR

    Deconfined Fermions but Confined Coherence?

    Full text link
    The cuprate superconductors and certain organic conductors exhibit transport which is qualitatively anisotropic, yet at the same time other properties of these materials strongly suggest the existence of a Fermi surface and low energy excitations with substantial free electron character. The former of these features is very difficult to account for if the material possesses three dimensional coherence, while the latter is inconsistent with a description based on a two dimensional fixed point. We therefore present a new proposal for these materials in which they are categorized by a fixed point at which transport in one direction is not renormalization group irrelevant, but is intrinsically incoherent, i.e. the incoherence is present in a pure system, at zero temperature. The defining property of such a state is that single electron coherence is confined to lower dimensional subspaces (planes or chains) so that it is impossible to observe interference effects between histories which involve electrons moving between these subspaces.Comment: 31 pages, REVTEX, 3 eps figures, epsf.tex macr

    Nod1 signaling overcomes resistance of S. pneumoniae to opsonophagocytic killing

    Get PDF
    Airway infection by the Gram-positive pathogen Streptococcus pneumoniae (Sp) leads to recruitment of neutrophils but limited bacterial killing by these cells. Co-colonization by Sp and a Gram-negative species, Haemophilus influenzae (Hi), provides sufficient stimulus to induce neutrophil and complement-mediated clearance of Sp from the mucosal surface in a murine model. Products from Hi, but not Sp, also promote killing of Sp by ex vivo neutrophil-enriched peritoneal exudate cells. Here we identify the stimulus from Hi as its peptidoglycan. Enhancement of opsonophagocytic killing was facilitated by signaling through nucleotide-binding oligomerization domain-1 (Nod1), which is involved in recognition of γ-D-glutamyl-meso-diaminopimelic acid (meso-DAP) contained in cell walls of Hi but not Sp. Neutrophils from mice treated with Hi or compounds containing meso-DAP, including synthetic peptidoglycan fragments, showed increased Sp killing in a Nod1-dependent manner. Moreover, Nod1-/- mice showed reduced Hi-induced clearance of Sp during co-colonization. These observations offer insight into mechanisms of microbial competition and demonstrate the importance of Nod1 in neutrophil-mediated clearance of bacteria in vivo

    Vuvuzela: scalable private messaging resistant to traffic analysis

    Get PDF
    Private messaging over the Internet has proven challenging to implement, because even if message data is encrypted, it is difficult to hide metadata about who is communicating in the face of traffic analysis. Systems that offer strong privacy guarantees, such as Dissent [36], scale to only several thousand clients, because they use techniques with superlinear cost in the number of clients (e.g., each client broadcasts their message to all other clients). On the other hand, scalable systems, such as Tor, do not protect against traffic analysis, making them ineffective in an era of pervasive network monitoring. Vuvuzela is a new scalable messaging system that offers strong privacy guarantees, hiding both message data and metadata. Vuvuzela is secure against adversaries that observe and tamper with all network traffic, and that control all nodes except for one server. Vuvuzela's key insight is to minimize the number of variables observable by an attacker, and to use differential privacy techniques to add noise to all observable variables in a way that provably hides information about which users are communicating. Vuvuzela has a linear cost in the number of clients, and experiments show that it can achieve a throughput of 68,000 messages per second for 1 million users with a 37-second end-to-end latency on commodity servers.National Science Foundation (U.S.) (Award CNS-1053143)National Science Foundation (U.S.) (Award CNS-1413920

    Withdrawal of anticancer therapy in advanced disease: a systematic literature review

    Get PDF
    Abstract Background Current guidelines set out when to start anticancer treatments, but not when to stop as the end of life approaches. Conventional cytotoxic agents are administered intravenously and have major life-threatening toxicities. Newer drugs include molecular targeted agents (MTAs), in particular, small molecule kinase-inhibitors (KIs), which are administered orally. These have fewer life-threatening toxicities, and are increasingly used to palliate advanced cancer, generally offering additional months of survival benefit. MTAs are substantially more expensive, between £2-8 K per month, and perceived as easier to start than stop. Methods A systematic review of decision-making concerning the withdrawal of anticancer drugs towards the end of life within clinical practice, with a particular focus on MTAs. Nine electronic databases searched. PRISMA guidelines followed. Results Forty-two studies included. How are decisions made? Decision-making was shared and ongoing, including stopping, starting and trying different treatments. Oncologists often experienced ‘professional role dissonance’ between their self-perception as ‘treaters’, and talking about end of life care. Why are decisions made? Clinical factors: disease progression, worsening functional status, treatment side-effects. Non-clinical factors: physicians’ personal experience, values, emotions. Some patients continued treatment to maintain ‘hope’, often reflecting limited understanding of palliative goals. When are decisions made? Limited evidence reveals patients’ decisions based upon quality of life benefits. Clinicians found timing withdrawal particularly challenging. Who makes the decisions? Decisions were based within physician-patient interaction. Conclusions Oncologists report that decisions around stopping chemotherapy treatment are challenging, with limited evidence-based guidance outside of clinical trial protocols. The increasing availability of oral MTAs is transforming the management of incurable cancer; blurring boundaries between active treatment and palliative care. No studies specifically addressing decision-making around stopping MTAs in clinical practice were identified. There is a need to develop an evidence base to support physicians and patients with decision-making around the withdrawal of these high cost treatments

    Dynamics of Josephson junctions and single-flux-quantum networks with superconductor-insulator-normal metal junction shunts

    Full text link
    Within the framework of the microscopic model of tunneling, we modelled the behavior of the Josephson junction shunted by the Superconductor-Insulator-Normal metal (SIN) tunnel junction. We found that the electromagnetic impedance of the SIN junction yields both the frequency-dependent damping and dynamic reactance which leads to an increase in the effective capacitance of the circuit. We calculated the dc I-V curves and transient characteristics of these circuits and explained their quantitative differences to the curves obtained within the resistively shunted junction model. The correct operation of the basic single-flux-quanta circuits with such SIN-shunted junctions, i.e. the Josephson transmission line and the toggle flip-flop, have also been modelled.Comment: 8 pages incl. 7 figure
    corecore