1,995 research outputs found

    Exploration of the memory effect on the photon-assisted tunneling via a single quantum dot: A generalized Floquet theoretical approach

    Full text link
    The generalized Floquet approach is developed to study memory effect on electron transport phenomena through a periodically driven single quantum dot in an electrode-multi-level dot-electrode nanoscale quantum device. The memory effect is treated using a multi-function Lorentzian spectral density (LSD) model that mimics the spectral density of each electrode in terms of multiple Lorentzian functions. For the symmetric single-function LSD model involving a single-level dot, the underlying single-particle propagator is shown to be related to a 2 x 2 effective time-dependent Hamiltonian that includes both the periodic external field and the electrode memory effect. By invoking the generalized Van Vleck (GVV) nearly degenerate perturbation theory, an analytical Tien-Gordon-like expression is derived for arbitrary order multi- photon resonance d.c. tunneling current. Numerically converged simulations and the GVV analytical results are in good agreement, revealing the origin of multi- photon coherent destruction of tunneling and accounting for the suppression of the staircase jumps of d.c. current due to the memory effect. Specially, a novel blockade phenomenon is observed, showing distinctive oscillations in the field-induced current in the large bias voltage limit

    Effects of phlebotomy on the growth of ferric nitrilotriacetate-induced renal cell carcinoma.

    Get PDF
    The ferric nitrilotriacetate-induced carcinogenesis model is unique in that reactive oxygen species-free radicals are involved in the carcinogenic process. But the effects of iron-withdrawal in the progression of renal cell carcinoma are not well understood. We performed repeated phlebotomies on animals that had been administered ferric nitrilotriacetate in the initiation stage of renal cell carcinoma (phlebotomy group), and compared the development of renal tumors with those not receiving repeated phlebotomies (non-phlebotomy group). Ferric nitrilotriacetate-treated male Wistar rats were randomly divided into 2 groups: a phlebotomy group (21 rats) and a non-phlebotomy group (17 rats). Ten age-adjusted normal rats were also observed as a normal group. Hematocrit was maintained under 25% in the phlebotomy group. Hematocrit levels in the normal group and in the non-phlebotomy group were not significantly different. As a result, the incidence of renal cell carcinoma was not significantly different between phlebotomy and non-phlebotomy animals. However, the total weight of the renal cell carcinoma was significantly heavier in the animals from non-phlebotomy group than in those from the phlebotomy group (23.64 g +/- 18.54 vs. 54.40 g +/- 42.40, P &#60; 0.05). The present study demonstrated that phlebotomy after the administration of ferric nitrilotriacetate did not reduce the incidence of renal cell carcinoma. In addition, we showed that iron withdrawal at the promotion stage of carcinogenesis will retard tumor growth.</p

    Co-tunneling current through the two-level quantum dot coupled to magnetic leads: A role of exchange interaction

    Full text link
    The co-tunneling current through a two-level doubly occupied quantum dot weakly coupled to ferromagnetic leads is calculated in the Coulomb blockade regime. It is shown that the dependence of the differrential conductance on applied voltage has a stair-case structure with different sets of "stairs" for parallel and anti-parallel configurations of magnetization of the leads. Contributions to the current from elastic and inelastic processes are considered distinctly. It is observed that the interference part of the co-tunneling current involves terms corresponding to inelastic processes. Dependence of the co-tunneling current on the phases of the tunneling amplitudes is studied.Comment: LaTex, 14 page

    Magnetic-Field Dependence of Tunnel Couplings in Carbon Nanotube Quantum Dots

    Get PDF
    By means of sequential and cotunneling spectroscopy, we study the tunnel couplings between metallic leads and individual levels in a carbon nanotube quantum dot. The levels are ordered in shells consisting of two doublets with strong- and weak-tunnel couplings, leading to gate-dependent level renormalization. By comparison to a one- and two-shell model, this is shown to be a consequence of disorder-induced valley mixing in the nanotube. Moreover, a parallel magnetic field is shown to reduce this mixing and thus suppress the effects of tunnel renormalization.Comment: 5 pages, 3 figures; revised version as publishe

    A Large Blue Shift of the Biexciton State in Tellurium Doped CdSe Colloidal Quantum Dots

    Full text link
    The exciton-exciton interaction energy of Tellurium doped CdSe colloidal quantum dots is experimentally investigated. The dots exhibit a strong Coulomb repulsion between the two excitons, which results in a huge measured biexciton blue shift of up to 300 meV. Such a strong Coulomb repulsion implies a very narrow hole wave function localized around the defect, which is manifested by a large Stokes shift. Moreover, we show that the biexciton blue shift increases linearly with the Stokes shift. This result is highly relevant for the use of colloidal QDs as optical gain media, where a large biexciton blue shift is required to obtain gain in the single exciton regime.Comment: 9 pages, 4 figure

    Spins in few-electron quantum dots

    Full text link
    This review describes the physics of spins in quantum dots containing one or two electrons, from an experimentalist's viewpoint. Various methods for extracting spin properties from experiment are presented, restricted exclusively to electrical measurements. Furthermore, experimental techniques are discussed that allow for: (1) the rotation of an electron spin into a superposition of up and down, (2) the measurement of the quantum state of an individual spin and (3) the control of the interaction between two neighbouring spins by the Heisenberg exchange interaction. Finally, the physics of the relevant relaxation and dephasing mechanisms is reviewed and experimental results are compared with theories for spin-orbit and hyperfine interactions. All these subjects are directly relevant for the fields of quantum information processing and spintronics with single spins (i.e. single-spintronics).Comment: final version (52 pages, 49 figures), Rev. Mod. Phy

    A triple quantum dot in a single wall carbon nanotube

    Full text link
    A top-gated single wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double and triple quantum dot stability diagrams. Simulations using a capacitor model including tunnel coupling between neighboring dots captures the observed behavior with good agreement. Furthermore, anti-crossings between indirectly coupled levels and higher order cotunneling are discussed.Comment: Supporting Information is available at Nano Lett. website (see link below

    Measurement of Two-Qubit States by a Two-Island Single Electron Transistor

    Full text link
    We solve the master equations of two charged qubits measured by a single-electron transistor (SET) consisted of two islands. We show that in the sequential tunneling regime the SET current can be used for reading out results of quantum calculations and providing evidences of two-qubit entanglement, especially when the interaction between the two qubits is weak
    • …
    corecore