494 research outputs found

    Underlying motivating factors for movie-induced tourism among Emiratis and Indian expatriates in the United Arab Emirates

    Get PDF
    This study explores the underlying motivating factors of Emiratis and Indian expatriates to visit destinations featured in movies. The results revealed a five-factor structure for Indians: novelty, fantasy-driven, personal connection, prestige and movie connection, vis-à-vis a three-factor structure for Emiratis: novelty, fantasy-driven and personal connection with the movie location. An analyses of variance analysis (ANOVA) showed significant differences in the individual mean scores of items, with the exception of novelty. Regarding gender, while no significant differences were found between the male and female Indian expatriate populations across all factors and underlying items, differences for some items were observed between male and female Emiratis, with male participants demonstrating higher motivation than female participants. These findings support the notion that the underlying factors influencing movie-induced tourism differ between cultures, while the influence of gender was found to be limited. Overall, the study enhances the understanding of practitioners and policymakers tasked with attracting tourists to movie destinations

    Artificial Neural Networks for Solving Ordinary and Partial Differential Equations

    Full text link
    We present a method to solve initial and boundary value problems using artificial neural networks. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the boundary (or initial) conditions and contains no adjustable parameters. The second part is constructed so as not to affect the boundary conditions. This part involves a feedforward neural network, containing adjustable parameters (the weights). Hence by construction the boundary conditions are satisfied and the network is trained to satisfy the differential equation. The applicability of this approach ranges from single ODE's, to systems of coupled ODE's and also to PDE's. In this article we illustrate the method by solving a variety of model problems and present comparisons with finite elements for several cases of partial differential equations.Comment: LAtex file, 26 pages, 21 figs, submitted to IEEE TN

    3-D Registration on Carotid Artery imaging data: MRI for different timesteps

    Full text link
    A common problem which is faced by the researchers when dealing with arterial carotid imaging data is the registration of the geometrical structures between different imaging modalities or different timesteps. The use of the "Patient Position" DICOM field is not adequate to achieve accurate results due to the fact that the carotid artery is a relatively small structure and even imperceptible changes in patient position and/or direction make it difficult. While there is a wide range of simple/advanced registration techniques in the literature, there is a considerable number of studies which address the geometrical structure of the carotid artery without using any registration technique. On the other hand the existence of various registration techniques prohibits an objective comparison of the results using different registration techniques. In this paper we present a method for estimating the statistical significance that the choice of the registration technique has on the carotid geometry. One-Way Analysis of Variance(ANOVA) showed that the p-values were <0.0001 for the distances of the lumen from the centerline for both right and left carotids of the patient case that was studied.Comment: 4 pages, 4 figures, 1 table, preprint submitted to IEEE-EMBC 201

    Abstract Radio Resource Management Framework for System Level Simulations in LTE-A Systems

    Get PDF

    Automatic Seizure Detection Based on Time-Frequency Analysis and Artificial Neural Networks

    Get PDF
    The recording of seizures is of primary interest in the evaluation of epileptic patients. Seizure is the phenomenon of rhythmicity discharge from either a local area or the whole brain and the individual behavior usually lasts from seconds to minutes. Since seizures, in general, occur infrequently and unpredictably, automatic detection of seizures during long-term electroencephalograph (EEG) recordings is highly recommended. As EEG signals are nonstationary, the conventional methods of frequency analysis are not successful for diagnostic purposes. This paper presents a method of analysis of EEG signals, which is based on time-frequency analysis. Initially, selected segments of the EEG signals are analyzed using time-frequency methods and several features are extracted for each segment, representing the energy distribution in the time-frequency plane. Then, those features are used as an input in an artificial neural network (ANN), which provides the final classification of the EEG segments concerning the existence of seizures or not. We used a publicly available dataset in order to evaluate our method and the evaluation results are very promising indicating overall accuracy from 97.72% to 100%

    A six stage approach for the diagnosis of the Alzheimer’s disease based on fMRI data

    Get PDF
    AbstractThe aim of this work is to present an automated method that assists in the diagnosis of Alzheimer’s disease and also supports the monitoring of the progression of the disease. The method is based on features extracted from the data acquired during an fMRI experiment. It consists of six stages: (a) preprocessing of fMRI data, (b) modeling of fMRI voxel time series using a Generalized Linear Model, (c) feature extraction from the fMRI data, (d) feature selection, (e) classification using classical and improved variations of the Random Forests algorithm and Support Vector Machines, and (f) conversion of the trees, of the Random Forest, to rules which have physical meaning. The method is evaluated using a dataset of 41 subjects. The results of the proposed method indicate the validity of the method in the diagnosis (accuracy 94%) and monitoring of the Alzheimer’s disease (accuracy 97% and 99%)
    corecore