40 research outputs found

    Effect of Shot Peening on Oxidation and Precipitation in Inconel 718

    Get PDF
    In this study, the effect of the surface state on the behaviour of Inconel 718 alloy exposed to 640 ∘ C and 700 ∘ C environments for times varying between one and one hundred hours was investigated. In particular, the focus was set on the evolution of oxidation and precipitation phenomena during thermal exposure. Three surface states were considered: two generated through shot peening treatments featuring different coverage levels, while the third condition is a non-peened one. Shot peening treatments modify the surface condition and introduce higher residual stresses and microhardness values than in the non-treated condition. The morphology of the oxides appears to be different depending on the condition observed. Regarding the kinetics, over time the oxidation process follows a parabolic trend and appears to be influenced by the surface state; in particular, severe shot peening treatment is characterized by the highest intensity of the phenomenon. However, the order of magnitude of the weight gains measured suggests that the observed variations can be neglected, and that the positive effect of shot peening can be exploited without introducing oxidation problems. From the point of view of the microstructural evolution, an increase in the coarsening kinetics of γ ” phase was observed in the shot peened layer

    Fatigue threshold analysis of quenced tempered and shot peened steels

    No full text
    reserved2I. Fernandez Pariente; S. BagherifardI., Fernandez Pariente; Bagherifard, Sar

    The positive role of nanometric molybdenum–vanadium carbides in mitigating hydrogen embrittlement in structural steels

    Get PDF
    The influence of hydrogen on the fracture toughness and fatigue crack propagation rate of two structural steel grades, with and without vanadium, was evaluated by means of tests per-formed on thermally precharged samples in a hydrogen reactor at 195 bar and 450 °C for 21 h. The degradation of the mechanical properties was directly correlated with the interaction between hydrogen atoms and the steel microstructure. A LECO DH603 hydrogen analyzer was used to study the activation energies of the different microstructural trapping sites, and also to study the hydrogen eggresion kinetics at room temperature. The electrochemical hydrogen permeation technique was employed to estimate the apparent hydrogen diffusion coefficient. Under the mentioned hydrogen precharging conditions, a very high hydrogen concentration was introduced within the V-added steel (4.3 ppm). The V-added grade had stronger trapping sites and much lower apparent diffusion coefficient. Hydrogen embrittlement susceptibility increased significantly due to the presence of internal hydrogen in the V-free steel in comparison with tests carried out in the uncharged condi-tion. However, the V-added steel grade (+0.31%V) was less sensitive to hydrogen embrittlement. This fact was ascribed to the positive effect of the precipitated nanometric (Mo,V)C to alleviate hydrogen embrittlement. Mixed nanometric (Mo,V)C might be considered to be nondiffusible hydro-gen-trapping sites, in view of their strong hydrogen-trapping capability (~35 kJ/mol). Hence, mechanical behavior of the V-added grade in the presence of internal hydrogen was notably improved
    corecore